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§1 Introduction. We consider the asymptotic behavior in time of solutions to

the Cauchy problem for the generalized Korteweg-de Vries (gKdV) equation

{ u + (JulP~ u), + %umm =0, tzx IS R,
u(0,z) = up(z), z€R.

(1.1)

Here up is a real valued function and p > 3. We denote the Sobolev space
HY = {¢ € L% ||¢|l11 = “(1 +_m2)1/2(1 )1/2¢||L2 < oo}, and the free Airy

evolution group -

U = F1eH ).

Here and below F¢ or g£ is the Fourier transform of the function ¢ “defined

by F¢(&) = # [ e ¢(z)dz. The inverse Fourier transformation JF~!
given by the formula F~1¢(z) = f e p(£)dE.

is

Our purpose in this note is to explaln the following result which was proved in

paper [12].
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Theorem 1.1. We assume that the initial data ug are real, wug € HY'!' and
lluoll1,1 = € is sufficiently small. Then there ezists a unique global solution wu €
C(R; H''), of the Cauchy problem (1.1) with p >3 such that

Ce Ce?
—_ ()l £ ——7,
1 “uu ( )2 t%(l—l-t)%

(1+1)3
forall t>0 andfor every (€ (4,00]. Furthermore we show that there erists
a unique final state uy € L? such that

u(t) — U(t)ut||pz < Cet™5  for t>1. (1.2)

—l

Ju(t)lzo <

The Cauchy problem (1.1) was intensively studied by many authors and a large
amount of literature is devoted to investigate it. The existence and uniqueness of
solutions to (1.1) in different Sobolev spaces were proved in [ 9, 10, 14, 15, 16, 19,
20, 23, 27 ]. The smoothing properties of solutions were studied in [ 3, 5, 6, 15,
16 ] and the blow-up effect for the slowly decaying solutions of the Cauchy problem
(1.1) was found in [ 2 ]. For the special cases of the KAV equation itself and the
modified KdV equation ( p =3 in (1.1)) the Cauchy problem was solved by the
Inverse Scattering Transform (IST) method and the large time asymptotic behavior
of solutions was found (see [1, 7]). The IST method depends essentially on the
nonlinear character of the equation, although in the case of MKdV equation (p =
3) solutions decay with the same speed as in the corresponding linear case, i.e.
supgeg |u(t,z)| < C(1+t)"Y3 as t— oco. Now let us give a brief survey of the
previous results on the large time asymptotic behavior of solutions to (1.1) which were
obtained by functional analytic methods. To state these results we introduce some

function spaces. L7 = {¢ € &'; |4, < oo}, where [gll, = ( |¢(x)lPdz)"/* it
1<p< oo and |¢llcc = ess.sup,egr |@(z)] if p=oo. For simplicity we
let ||@]| = ||¢|l2. Weighted Sobolev space H™* is defined by H™* = {¢ €

85 I llm,s = |(1+2%)"* (1 - 82)™?¢| < 0}, m,s €R.
~In paper [25] Strauss proved

Proposition 1.1. Let p > 5, the initial data wuy € LN HYY and € =
lluollLr + ||uo|| 1o be sufficiently small. Then the solution wu(t) of (1.1) satisfies
the time decay estimate  ||u(t)||oo < Ce(1+t)~35 and there ezists a final state
uy € L?  such that  lim;,o |Ju(t) — U(t)uy| = 0.

‘In his method W. Strauss used the following large time decay estimate ||U (¢)uo]|oo
< Ct 3||luglly ofthe L*® norm of solutions to the Airy equation.

Later this result on the asymptotically free evolution of solutions to (1.1) was
extended to the values p > (5++/21)/2 ~4.79 in [17, 18, 24, 26]. They obtained
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- Proposition 1.2. Assume that p> (5+v/21)/2~4.79, the initial data g €
L?/@~D N HY and €= |luolpapsczo-v) + |[uo||gro s sufficiently small. Then
the solution  u(t) of (1.1) satisfies the time decay estimate  |u(t)||2, < Ce(1 +
t)_é(l"%) and there exists a final state u, € L? such that

lims o0 ||u(t) — U(t)uy|| = 0.

Their method is based on the following LP decay estimate IIU(t)Uollié <
ct~3(-3) lluoll2p/(20—1) for the solutions to the Airy equation.

In paper [22] Ponce and Vega improved the above result for the values of p>
(9 + V/73)/4 ~ 4.39.

Proposition 1.3. Let p > (9+ V73)/4 =~ 4.39, the initial data wug € L' N
HY and €= |lugllzr + |luollmo be sufficiently small. Then the same result as
in Proposition 1.2 holds. Furthermore the solution wu(t) satisfies the time decay
estimate

(=82 *ut)]|,, < Ce(1 +8)~1.

For the proof of Proposition 1.3 Ponce and Vega used the LP decay estimates
of solutions to the Airy equation and the following L° time decay estimate

(- (9§)1/4U(t)u0|]oo < Ot~ %|luglly of the half derivative of solutions to the Airy
equation.

Finally in [4] Christ and Weinstein extended the result of Ponce and Vega to the
powers p > (23 —/57)/4 ~ 3.86.

Proposition 1.4. Assume that p > (23—+/57)/4~ 3.86, the initial data ug €
L'NH?*®,  wupe L' andthenorm €= |lug1+||0zuoll1+||uoll20 is sufficiently
small. Then the same result as in Proposition 1.3 holds. Furthermore the solution
u(t) satisfies the time decay estimate |u(t)|, < Ce(1 + t)_%(l'%) for p>4.

The proof of Proposition 1.4 is based on the previous methods. Also it uses the
L? decay estimates of solutions to the Airy equation

IU t)uolly < Ot~ 3079y ;. (1.3)
for all p> 4.

Thus we do not know a character of the large time asymptotic behavior of the
solutions to the Cauchy problem for the generalized Korteweg-de Vries equation
(1.1) with  p < 3.86.. Our result in Theorem 1.1 fillsa gap 3 < p < 3.86. The
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asymptotic expansion of the solutions to the Cauchy problem (1.1) was obtained in [
21 ] for the integer values of p > 4. The evaluation of the asymptotics in [ 21 | is
based on the perturbation theory and essentially uses the explicit representation of
the Fourier transform of the nonlinearity and therefore does work only for the integer
values of p. o

The Airy free evolution group is defined by

U(t)g = F1e (¢ -
_ % / dé(v) / deei@—v)Fite/3 _ %Re / A1< i )¢(y)dy,

where  Ai(z) = + fooo ei®z+iz*/3¢>  is the Airy function (we take a slightly differ-
ent definition of the Airy function, usually the real part of our function Ai is called
by the Airy function). The Airy function has the following asymptotics:  Ai(n) =

—7/4 Y : .
\/l_exp( 2iy/Inl® +i% )+O(|17l ) a5 = ¥ — —oo and Ai(n) =

\/,—’ -3Vr 40 (7) T/4e=3V1 ) as 1= — +oo (see, eg, [8]). In[12, The-
orem 1.3] we showed that the solution of (1.1) has the same asymptotics as that of

the Airy function when the function wuy decays as x — oo faster than any
exponent.

§2 Key linear estimates.

Our method uses the estimate (1.3) and the following time decay estimate of
solutions to the Airy equation

| @ao) U (Bu0)allow < CE/3(1+£)7/3] ol l1x, (2.1)

where
[Hluolllxo = lluollz,o + | D*zuo|l + [|Gzzuoll,

and a=1/2—+,7€ (0,min (3, %3)) . The inequality (2.1) is obtained from the
estimates

(14127
U (uo(e)] < O+ 1)~ (1 ; 72) lolllxs

and

. 1/4
_ z
000w < 0t (14 5) 7 Jluallxe
Vvt
For the proofs of the above estimates, see [12, Lemma 2.2]. Our method is close to that
of [11] in the point that here we also use the following operator I =z 43t ffoo Ody
for obtaining estimates of the solution in the weighted Sobolev spaces. The operator
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I almost commutes with the linear part L = 8; + 303 of equation (1.1) and
acts on the nonlinear term  (|u|?~!u), as a first order differential operator. Note
that the operator I is related with the operator J = U(—t)zU(t) = (z — t6?)
since we have I —J =3t [* Ldz.

In what follows we consider the positive time only. We define the function space
Xt as follows

Xr={p€C([0,T};L%); ll¢lllx, = sup [l¢(2)llx < oo},
. o te[0,T] ,

where  [|¢(t)]lx = l|¢®)]l0 + |ID*TS(t)|| + ||8Tp(t)||. By virtue of (1.3) with
up = U(—t)¢(t) and by the Holder’s inequality we have for all 4 < p < oo
le®llp < Ct=3072|[U(=1)é(®)]a |
< Ct73079) (Jo@)| + 12U (~)$ () |2/ (1 -20)

< Ct™3079) ()| + |1 DU (—t)p(t)|]) < Ct= 307 D)||g]|| x- -( |
2.2

Via (2.1) we also get the estimate _
16()¢2(®)lleo < CE2/3(1+8)713)||¢]| %, (2.3)

Using estimates (2.2) and (2.3) we obtain in the next section the result of Theorem
1.1 by considering a-priori estimates of local solutions in the function space ~ Xr.

§3 Proof of Theorem 1.1.

To clarify the idea of the proof of the Theorem 1.1 we only show a priori estimates
of local solutions to gKdV equation. For that purpose we use the following local
existence theorem.

Theorem 3.1. We assume that ug € HY, lluolli, =€ <€ and € s
sufficiently small. Then there ezists a finite time interval [0,T] with T > 1
and a unique solution wu of (1.1) with p>3 such that |||u|||x, < C¥€.

For the proof of Theorem 3.1, see, e.g., [ 9, 14, 15, 16, 20, 27 ].

Lemma 3.1. Let wu be the local solutions of the Cauchy problem (1.1) with
p >3 stated in Theorem 3.1. Then we have |||u|||x, < Ce, where the constant
C does not depend on the time T of existence of solutions.

Proof. We write the gKdV equation in the form Lu = —(|u|*~'u),. Differen-
tiating it with respect to = we get

Luz = —(|[u|? " u)zs. (3.1)
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Multiplying both sides of (3.1) by u, and integrating by parts we obtain
J ) .
;ﬁ!luzIF < Ollull55 3 flurs oo [luz 2. (32)
Using estimates (2.2), (2.3) in the right hand side of (3.2), we get
Iluxll2 <C|Hu||l"+1 “3(141)578. (3.3)

Applying the operator I to the both sides of (3.1)' and using the commutation
relations [L,I]=3[° Ldz’, [I,8;]=-1 we have

LIu, = —p ([ulP~ (Tug)z + (p — 1)|ulPPuugTus + 2JulP~tu,) . (3.4)
Multiplying (3.4) by Iu, and integrating by parts we obtain
IIIuacll2 < Clfulllbet™3(1 +£)378(|l[ull &y + I Tus]?). (3.5)

Since (Iu)z — (Ju)z = 3t(|u|P~ u), for the solution of equation (1.1) we have
1Tuzll < C (lull + 1(Twall + tluus oo lullllullss®)
< Clluoll + Ct*~¥||Julll%,- (3-6)
Hence (3.5) and (3.6) yield
d _2 2_
+1Tual® < ClllullIF; $(1+1¢)378 (3.7)

Applying the operator D®I to (1.1), multiplying the result by D[y and
using inequalities (see, [12, Lemma 2.3])

1D fule = ull? < O[|lul ™ (luue oo + lull8 e |5527) ,

(D*h,D®ulf~hy)| < CID=I (1D + 196k (ul%slute o
22 2 s o + 2 2 e 57,
where a=1/2—7v, 7€ (0,min(},252%)), h=1Tu we get
d
giuDaIunz = —2(D°Tu, pD®|ulf =} (I}, + (3 - p)D? (jul"~"w))
< =1l ( (1D 1ul + 07ul) (Fulls* el
2 2 s oo + Nl 2w 57)

1-3
e (el + ol e ) ). 58)
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Since we take 7 tobe sufﬁéiently small, we see that there exists a positive constant
¢ such that

—IID“IUII"’ < Clllulli&; @+ 87, (3.9)

where we have used the estimate | D%*Iu|| < C|||u|||x;. Thus inequalities (3.2),
(3.7), (3.8) and (3.9) yield

| t |
lu()ll1o + I D*Tu(t)|| + 8:Tu(t)]| < Clluollz,1 + C||lull 5" /0 (14 5)~1"#ds.

The last inequality with estimate |u(t)||x < C(|lu(®)]| + |D*Iu(®)|| + ||0=Tu(t)|])
imply that if the initial data are sufficiently small then |||u|||x; < Cllug|l1,1 for
any 7. This completes the proof of Lemma 3.1. O

Proof of Theorem 1.1 Via Lemma 3.1 we have |||jul||x, < Ce. We take
e satisfying Ce <¢€'. Then astandard continuation argument yields the a-priori
estimate |||u|||x, < Ce forany T - becausetheconstant C does not depend
on the time 7. Therefore it follows that there exists a unique global solution
u € C(R; HY1), of the Cauchy problem (1.1) with p >3 such that

Ce Ce?
lu@®)llg € ——3—= lluu m( Moo £ 1,
(141)3738 t3(1+1)s
forall ¢ > 0 and for every (3 € (4,00]. We next show the existence of the
scattering state. Rewriting (1.1) in the form (U(—t)u): = —U(—t)0z(|ulP~1u),
we get

[U(=t)u(t) - U(—S)U(S)~II <C / IIU(T)IIi.’J 3|t () | o 2a(T) | dT
< Ce / t T77P3dr < Ces™(P3)/3 (3.10) -

for 1<s<t. By virtue of (3 10) we find that there exists a unique function
uy € L?  such that limjo Ju(t) —U()us| =0. Welet t—oo in
(3.10) to get (1.2). This completes the proof of Theorem 1.1. O ‘

Finally we note that in paper [13] we studied the asymptotic behavior for large
time of solutions to the Cauchy problem for the modified Korteweg-de Vries (mKdV)
equation:

1
ug + O N (u) + 3oz = 0, u(0,z) = ug(x), (mKdV)
- where z,t € R, the nonlinear term is equal to N (u) = a(t)ud, a(t) €

C(0,00) is real and bounded, and the initial data wuo are small enough be-
longing to the weighted Sobolev space H'! and the integral [ ug(z)dz = 0.
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Then we show that the solution wu(t) satisfies the decay estimates ||u(t)||Ls <
C(A+t)~1/3, and |Ju(t)us(t)||pe < Ct~2/3(1+t)~1/3 forall ¢t>0. Moreover
we proved that there exist unique functions W and @ € L*® such that the
following asymptotics for the solutions to the Cauchy problem for mKdV equation

)= w2 (%) e s ()] [ a2

~ 3in® (%) ) +0 (et_l/%A)

is valid for large time uniformly with respect to « € R, where ) € (0, %)
Also in paper [13] we constructed the modified scattering states.
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