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TIME LOCAL WELL-POSEDNESS FOR THE ZAKHAROV

SYSTEM WITH THE PERIODIC BOUNDARY CONDITION

RIKRERF B ER R 7R

B %% (Hideo TAKAOKA)

1. INTRODUCTION AND RESULT

In this paper we consider the time local well-posedness for the one dimen-

sional Zakharov system with the periodic boundary condition:

(1.1) i0u + adu = un, (t,z) € [-T,T] x T,
(12) -ﬂ%a?n — 9% = 2(jul®), (t,2) € [-T,T) x T,

(1-3) ’U,(O,CE) = UO(z)a ’I’L(O,J?) = '77'0(‘77)7 8{!2(0,:17) = ’n,1($), z €T,

where a and ﬂ are real constants with @ # 0 and 8 > 0, u and n are funétions
on the time-space [—T,T] x T with values in C and R, respectively, T is a
one dimensional torus which implies the periodic boundary cdndition and
T is a positive constant to be determined later.

The equations of (1.1)-(1.2) was presented by V. E. Zakharov [15] to
understand the the propagation of Langmuir turbulence waves in an un-

magnetized, completely ionized hydrogen plasma. In these equations, u is
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the slowly varying complex envelope of the electric field E with frequéncy

W,

E(t,z) = Re(u(t, :z:)e'“‘"), |

n denotes the deviation of the ion density from the equilibrium,' a is pro-
portional to the differentiation of the group velocity in the wave number

‘and (3 is the speed of ion acoustic wave in a plasma.

Our purpose in this paper is to show the time local well-posedness results
in a weak lclass for the initial value problem (1.1)-(1.3). The difﬁculfy to
solve the initial value problem (1.1)-(1.3) by the integral equations is that
the equation of (1.2) hés space deﬁvatives in the nonlinear term. One
derivative can be regained because of the second order hyperbolicity, but it
is a hard task to fegain the remaining one derivative in that term. then.
the usual contraction argument seems to meet with the so-called “loss of

derivative”.

There are a large amount of papers concerning the well-posedness of the
initial value problem (1.1)-(1.3) for the R* case (See[1,5,6,10,11,14]). How-
ever, to our knowledge, there are only a few papers concerning for the

periodic boundary condition problem (see, e.g., [4]).

Before precisely stating our results, we prepare the following notations.
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Definition 1.1. Let V be the space of functions f such that
f:RxT—-C,

f(-,z) € S(R) for each z € T and f(t,-) € C®(T) for each t € R.

For 5,b € R, we define the spaces X, and ¥ to be the completion of V with

respect to the norms:

I fllx, = Ifll1,s,272)
Ay, = 1£ll¢z,5,1/2)5

where

oo

1/2
1+ | + an?)® If(r,n)lzdr) :

— 00

f by = 1+ n 2s
T (Xej; n]) /

o0

1/2
1+ [|r| = Blnl)* | f(r, n)lzd’r) .

- 00

1 fllc2,5,0) = (Z(l + |n|)2s/
., neZ

Let ¢ € C$°(R) with ¢ = 1 on [~1, 1] and supporty C (—2,2) and ¥5s(t) =

Y(t/6).
We now state our theorem.

Theorem 1.1. Assume that 3/a is not integer. Given s,l satisfying 0 <
s—1<1and0 <1+ 1/2 < 2s. For any (ug,ng,n1) € H* x H' x H'71,

there exist T = T(|luol|Lz, ||nollg-1/2, IRl gr-3/2) > 0 and a unique solution
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(u,n, O¢n) of the initial value problem (1.1)-(1.3) in the time interval [T, T]
such that

v € C([-T,T]: H*(T)), ¢ru € X;,

n € C([-T,T]: H'(T)), ¥rn € 1,

din € C([-T,T] : H'~Y(T)), ¥7d:n € Yi_1.

For dny T' € (0,T), there exists € > 0 such that the map (o, 7o, 1) —
(@,7,0:7) is Lipschitz from {(&o, 7o, 1) : ||l — wollms + ||0 — nollm +
|71 — mallg-r < €} to ||& — ullpge(-7r 7180y + |7 — 2l -7 70280y +
18: 72— Bem| pgo (-1 7211-1) +[¥re (B — )| x, + |$7+ (R —n)llvi + |97 (e~
9yn)llvizs -
Remark 1.1. In [4], J. Bourgain showed that when o = 8 = 1 the initial
value problem (1.1)-(1.3) is time locally well-posed in a certain class. More

precisely, he showed that for any (uo,n0,n1) such that

Ug E_HS,

(1.4) igg(lﬂkl)“lﬁ(k)l,igg(HIkl)"lﬁE(k)l,ﬁg(lJrlkl)”'lla(k)l < oo,

with 0 < 0 < s < 1/2 < 81 < 1 where 0,5 are sufficiently close to 0,1/2,

respectively. There exist T > 0 and a unique solution (u,n,d;n) satisfying

u € C([-T,T]: H*), sup(1 + |k[)**|Fou(t, k)| < oo,
keZ :
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n € C([-T,T]: H*™1), sup(1 + |k|)?|Fen(t, k)| < oo,
kEZ '
din € C([-T,T) : H*~?), sup(1 + |k|)" " | FzOin(t, k)| < oo,
keZ

for t € [-T,T] and
luf|l = inf{||v]|x, : v(t) = u(t) on [-T,T] x T} < co.

Under the non resonance condition that 8/a is not integer, Theorem 1.1
implies the time local well-pbsednéss with the data in the usﬁal Sobolev
spaces H s x H' x H'=1. We do not assume the Weighﬁed L* condition in
the Fourier space such as (1.4) and we shall give a slighﬂy simpler proof

than in [4].

Remark 1.2. By Theorem 1.1, we have the time local well—posedness in

L% x H-Y/2 x H—3/2. Of course, the tesult in Theorem 1.1 also contain the

Hamiltonian class, that is‘, the energy space.

Remark 1.3. When 0 < s—1<1and 1/2 <[+ 1/2 < 2s, the result in

Theorem 1.1 hold with 3/a € R.

- The proof of Theorem 1.1 is based on the method introduced by Bourgain
[3] and Kenig-Ponce-Vega [9] to treat the KdV equation. We use respectively
the two different Fourier restriction norms for the equations (1.1)-(1.2) under

the non resonance condition that 3/« is not integer.
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2. ProoF oF THEOREM 1.1

First, we rewrite equations (1.1)-(1.3) as following integral equations:
Cu(t) = S(t)uo — z/ S(t — 7)(un)(r)dr,
| Jo

n(t) = 8,V (t)no + V(t)n1 + /0 V(t — 1)32(jul?)(r)dr,

where S(1) = €% and V(1) = sinBt(—82)1/2/8(-82)1/2.
We first state the two lemmas concerning the estimates of the linear and
nonlinear part of the Schrodinger and Wave equations on the function spaces

we consider.

Lemma 2.1. For any s € R, we have
15(t)uollx, < clluollae,

18V (t)nolly, < ellnollare,

V(®)mlly, < elinflme-2-

Lemma 2.2. For any s € R, we have

ey Jwo [ se-nree

X

e 2 1/2
s |F T7k|
<cl|Fll1s,-172) e (Z(l + k)’ (/ 1+ Ii n o)zk2|dT ’

kE€Z
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(2.2) “W) /0 Vit = )0, F(r)dr

Y,

. . | e 2 12
<c|Fli@s-1/2) +c(Z<1+"“'>2‘ (/ 1+lﬁ£|7’—kglklldr> ) |

k€Z

Lemma 2.1 and 2.2 follow from a direct calculation. For the proof of
that lemmas, see [3,9]. The following lemma plays to use the contraction

argument in the proof of Theorem 1.1.

Lemma 2.3. Forany s € R,0 < ¢ € 1,6 € (0,1] and 0 < b < 1/2, it
follows o |
s Fll(i,s,172) < €6 || Flli,s,1/2)
|5 Flli,s,0) < 661/2_b+6||F”(i,s,1/2)a

fori=1 and 2. N

Lemma 2.3 is proved by ﬁsing the Leibniz rules for fractional derivatives
(8, Theorem A.12], Hélder and Sobolev inequality with respect to time vari-
able. We give the followiﬁg lemma needed to estimate the nonlinear terms

appearing in the right hand side of (2.1) and (2.2). The following lemma

plays a key role in our proof.

Lemma 2.4. Assume B/« is not integer. For 0 < s -1 <1 and 0 <

I +1/2 < 2s, we have

(2.3)

(1 + |k)° 3 /°° | f(r, k1)
(L +1m+ k)2 A Joco (L4 [l (1 4 |71 + k2 |)1/2



81

(T—Tl,k kl)
THk—RD (L7 =] = Blk — ki)

<cl[fllzaizllglizziz,

dmn

L2z

FLEE) /°° k) |
L+ 171 = BRI =)o (L TRl (L + [y + 0272

. h(r — 71,k — k1)
A+lk=kl)p (L +lr -7 —alk— k1)2|)1/2

<C||f||L212 ||h|]L212

(24)

dT1

L212

Proof of Lemma 2.4. The proof uses the following’ two identities:

(T+ akz) - (‘T' -7 :I:ﬂ(k' — kl)) - (T1 + ak%) = Cl(k’ — kl)(k) + k1 F g—),

B

(T i,@k) - (‘T - T1 — a(k - k1)2) _ (T1 + Oﬁk%) = ak(k—2k1 :t E),

which implies
(2.5)

| . "
mas {|r + ok, Ir — 71 & Bk — k)l + ak?l} > 2Lk — ka4 by 7 21,

(2.6)

B

max {|7 £ Bk|,|r — 11 —a(k - k1)?|,|m + aki|} > l—?—'lk”k -2k £ al

Using these inequalities, we are able to overcome the difficulty of derivative

lose. In this paper, we prove only (2.3) and (2.4) in the regions that

(27) ‘T + akzl Z‘ITI + ak%la ”T _'Tll - /8|k - kl“v
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(2.8) 7] = BIk|l 2 |7 = 71 — a(k — k1)?], Ims + ok,

respectively.
We first prove (2.3) restricted to the region of (2.7). In that region by

Schwarz inequality we have that the left-hand side of (2.3) is bounded by

sup
T,k

(14 [k])* | 1
((1 17 + ak2) Z/ (TF 71 + oR2D(+ et (1 + [k — k)7

1
T+ —nl =Bk = k)

= Su’? Ir,k||f||L31§ lgllzz:2-
T)

1/2
) Il oz

In order to prove (2.3) it suffices to show that sup, j I x < co. Integrating
with respect to 7y and dividing the integral region into two regions that
k1 = k and k # k;. In k; = k, we have that the contribution of k; =k to

ITZ, i is bounded by

1
At +ak?) < ¢

We next consider the region of k; # k. Then by (2.5), (2.7) and 8/« is not

integer, we first note that
|7+ ak?| > (1 + |k — k1])(1 + |k + k1 £ 8/ ).

First in the regions of |k1| < |k|/2 or |k|/3 < |k1| it follows that |k —k1], |k +

ki1 + 8/a| > c|k|, then we have that the contribution of the region ki # k
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to If’ i is bounded by

o 1
c : .
%: (14 k) (1 4+ [KD*=242(1 + |7 + 0k + B(k — k1)])1=

: 1
L AT Al £ A= R

<c
for e € (0,1/2), s 20, I > —1/2 and s — 1 < 1. Next in the region of
|k|/2 < |k1] < 3|k|/2, we have that the contribution of the region ki # k to

If)k is bounded by

,‘1

L T R T ¥ ekl E B R
<, |
forl > —1/2.

Next we prove (2.4) restricted to the region of (2.8). In the same argument

as in the proof of (2.6), it suffices to show that

sup I,
T,k

g [ RDPRP 1
IR ((«1 17T = BT kZ/ (T+ i + akIN( + R (L + [k = kal)?

1

1 1/2
X : dT1>
(L+|r -7 —a(k— k1))
<o0.
We can assume k # 0. First in the regions that |k;| < 2]k|/5 or 2]k|/3 <

|k1|, integrating with respect to 7 and using (2.6),(2.8) we have that the
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contribution of the region k # 0 to I1 f k» is bounded by

(1 + &)+

¢ Z . 28 — 2s —
al<alkl/s o apljaging (1 BN (L 1R = Eal)2o(1 4 k= 2k £ B/el) -

1
(L1 |7 — ok? + 2akk;)1-¢

<e +c Z 1
B 2s 25-21+1—¢
|k1|<2|k|/5 or 2|k|/3< k4| (1 + [k ])?(1 + [k])

1
W H ks —A(m BT
for e € (0,1/2), s > 0 and s — ! > 0 where v = (7, k) is the solution of the

following linear equation with respect to ki,

-
20k

T —ak? +20kky =0, ie., v =

[ )

Then, we divide the sum with respect to k1 into the following three regions:
k1| < 20kl/5,2[k|/3 < |k1| < 3[k|/2 and 3[k|/2 < [ky].

In the regions that |k;| < 2|k|/5 or 2|k|/3 < |ki| < 3|k|/2, 112 7 Testricted

to that regions is bounded by

S — 1
(14 R )2 =<+ by = (r, BT

<c

?

for s >0,s—1> —1/2+¢/2 and 25 — [ > —1/2 + €. In the same way as
" above, in the region of 3|k|/2 < |k1], IIf,,c restricted to the above region is

bounded by

Z 1
2 (T T o= (1+ Ik — 2y & BJal)(1 + b1 = 7(r, F) )¢

<c

?
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for s >0, 2s—1>—1/2+4+ ¢ and 25— 2 —1/2 + €¢/2. Next, in the region
of 2|k|/5 < |k1| < 2|k|/3, we have that |k|/3 < |k — k1| < 5|k|/3. Then we
have that ILIT2, » Testricted to the above integral region is bounded by

1

¢ Z ( 45 —21—1
ayss<immi<aiyys (LT R (L+|k—2k £ 8/a])
1

T @+ E)er =7 (m, )=

<ec

9

for e € (0,1/2)and 2s —1>1/2. O

Remark 2.1. When 0 <s-1<1 annd _1}/2 <1l+1/2 <2s, Lemma 2.4

holds with for any 8/a € R.
The following proposition is an immediate consequence of Lemma 2.4. -

Proposition 2.5. Assume that 3/a is not integer. For any 0 <.s —1 <1

and 0 <1+ 1/2 < 2s, we have

(2.9) |unl(1,s,—1/2) < ellulla,s,172)1nll2,0,1/2)

(2.10) 102 ([ul* M 2.0,-1/2) < ellullfs,e1/2)-
Proof of Proposz'tion 2.5. We define
f(r, k) = (L4 [K])* (1 + |7 + ok 2 [a(r, k),

g(r k) = (L + [KD'(1 + lIr] = BIKINY2(A(r, R,
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h(r,k) = (1+ [k)* (1 + |7 — ak?|)Y2[a( -, —F)|.
From Lemma 24, the proof of the proposition follows. O

Remark 2.2. Proposition 2.5 holds when the right hand side of (2.9)-(2.10)

are replaced by
”“H(l,s,b)||n||(2,1,1/2) + ”UH(1,3,1/2)”n”(z,z,b),

”u“(l,s,b)“u”(l,s,1/2)a
respectively, with 1/2 — 1/8 < b < 1/2.

Remark 2.3. For the proof of the second terms of the right hand side of

(2.1) and (2.2), we obtain the similar result to Proposition 2.5.

Proof of Theorem 1.1. For T € (0, 1), we deﬁne
®(u,n) = S(t)uo — iw(t)/o S(t — )(Ypuppn)(7T)dT,

¥(u) = 8,V (t)no + V(£)ny + %(2) /0 t V(t — 1)32([prul?)(r)dr.

From Lemma 2.1-2.3, Proposition 2.5 and Remark 2.2, we have that
12(u, n)||lx, < clluollzs + <T*||ullx, ||y,

1€y, ~ 10:¥ (W)l < ellimollen + lInallan-1) + T*|lullk,
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for some g > 0. Similar argument to above, we have that

19(&3) - ®(u,)lx, < eT*(lullx, + Inllys +lallx, + Il

x (@ - ullx, + 13— nlv),

(@)= ¥(u)lly, ~ 1052 (@) = 0¥ (u)llyi_, < cTH(Jlullx, +|Ellx, )| — vl x,.

Thus, we have that & x ¥ x 9;¥ is a contraction map. Then, we obtain

the unique local existence results in X; X ¥; x Y;_; by the contraction

argument. [
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