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POWER VALUES OF BINOMIAL COEFFICIENTS

K.GYORY ( Debrecen )

It was an old diophantine problem to determine all binomial
coefficients which are perfect powers. Recently, this problem
has been completely solved. The purpose of this article is to
give a brief survey on this problem and some related questions.

The first section is concerned with power values of products
of consecutive‘integers.‘The second section is devoted to power
values of binomial coefficients. In the third and last sections

some common generalizations and open problems are discussed.

1. Power values of products of consecutive integers

Consider the equation
| 4 L
‘1) m(m+4)-..(~\.+’<-4) = X in integers m >4,
k,x, 222,

In 1724, inba letter addressed to D.Bernoulli, Goldbach argued
that (4) 1is not solvable for k=2, £=2 . It was a
conjecture from the 1820’s that (4) has no solution. There is
an extensive literature of the problem. Many special results were
established ( for references, sees[qj,[ng]’ (391 ). We mention
here the most important results only. ,

In 1857, Liouville settled the case when at least one factor
M iy mot -1 is a prime, or k>m -5 . This implied
that k! =% x L if k >4 . In the same year Mlle A.D.
proved that (4) has no solution for k=3 . In 1917, Narumi
proved the conjecture for k ¢ 202, £ -2 , and Szekeres , in
the thirties, for 2 ¢ lk ¢ 9 and Jl‘z 2. .

In 1939, Erdds Ts] and Rigge (24) proved independently
of each other the conjecture for the case £ =2 . Their proof
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was elementary and ingenious. They developed the method of Narumi
and used among others a theorem of Sylvester which asserts that m>k
implies P(a (m+4) ... (m+ k...‘f\))'> k. :
Here P (a) denotes the greatest prime factor of an integer as>4,
Erdds and Siegel proved in 1940 the conjecture for any
sufficiently large k . Their proof was never published. In 1955,
Erdds [2) gave a different, elementary proof for this theorem.
By using Erdds’method, Erd8s and Selfridge proved in 1975

the conjecture in full generality.

THEOREM A ( Erdds and Selfridge [9'3 ); Equation (4) has

no solution.

2. Power values of binomial coefficients

Consider now the equation

-A
(2) (M+L‘: ) = x'q' in integers kz 2, fr\ak-i-d}

The assumption " > k+ 41 is not a restriction. Indeed, using

(M_Q-t-k): (k:~:;4 )

one can interchange k. énd m -4 if m <k , and any result

the relation

for (2,) applies automatically to the case s £ k as well.

For k= £ =2 , (2) is equivalent to the systems of
equations ' : ‘
and

2
M = 2-"\)'?- ) mrAs

which lead to the Péll eqﬁations

2 A i
A — 2 %= +* A in integers A, ~>.

This implies that ih this case (2.) has infinitely many CMM‘)
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solutions. : :
For |.4;'5’ £ =2 ,» (2) can be written in the form

M (m4A)(m+2) =CxZ*.

In this case Meyl [43%] proved in 1878 that if m  is odd then
(max) = (4 1) is the only solution. For m even, Watson [3¢]
showed in 1919 that >the only solutions are (M,x) = (2,2)

and (4%, 140) . Hence, for k=73, £ =2,

(e 2
is the only solution of (2) .
In 1939 Erdds €67 conjectured that for £>2 , equation

CQ-) has no solution. In the same paper he proved this for 2=3

and for k = 2.2' . _
oblath (437 settled the cases &= 4,S . In 1951, Erdds

proved the following.

THEOREM B ( Erdds [3] ). For k > ) , equation (2) has

no solution.

His proof was based on his elementary, ingenious method
applied to eguation (1) .

For k< |y , the method of Erdds does not work. It is
interesting to note that in case of equation (4) the cases k=2,3
are the easiest ones. For equation (2) and its generalizations
just the converse is true, these cases proved to be the most

difficult.
Next we deal with the remaining cases k=2, , that is

with the equations

(2°~> (m;-_4) = x't in integers m 2% ,x22 , {452
and

m+2 L
2L5 ( 3 >: * in integers mzz h xz2, £>2,

It follows from some results of Dénes [ 23] that for certain
regular primes £ , (2a) and (2 L,) have no solutions. later
I showd ( cf. [44), C43] ) that if {d is a prime with
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Z 4 # 1 Cm«octh‘)then the solvability of (2b) 1mp11es the

solvablllty of (2a) . |

An 1mportant contrlbutlon was made by ledeman [32] who
proved that (2a) and (2b) have only finitely many solu-
tions. Further, he gave effective upper bounds for the solutions.
In his proof he used Baker)s method concerning linear forms in
logarithms. Terai [2327] used recent estimates for linear forms
in logarithms to show that in (2a) and (2b) , <4250
must hold. ' :

The following theorem follows immediately from a recent

result of Darmon and Merel (2 on the equation

> WLy nt =228 in x,4,2€2Z with (x15.2)=1,

THEOREM C ( Darmon and Merel ). Equation (2a) has

no solution.

Using an extension of WileS’method concerning the Fermat
‘equation, in [27 the authors showed that ('3) has the only
solutions X+~ =0 or * 41 . Equation (2a) 1is equivalent

to the systems of equations

v = AJ{ )4'\-44= 2%(

and - ¢

with positive integers 44, z i whence
"‘32’_‘*‘_ A= 222’

and the above-formulated theorem on (3) applies.

Concerning equation (TZL) , I have récently'proved £1437]
the following theorem which completed the proof of Erdos’conjec—

ture.

THEOREM D ( GySry [433 ). Equation CZL) has no solu-

tion.

I give a sketch of the proof of Theorem D.
Equation (2 L) can be written in the form
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m(m+4)Y(m+2) = G x(g.

Here L cannot be even, since for £ - even (S;’O_): 41101'

is the only solution and 44O is not a perfect power. Hence
we may assume that £ is an odd prime and by Oblith’s result
£ >5 .

If 3]lm or 3IIm+2 then (M;;?') =*‘3e or
(%) = = £  with some positive integers 4,2 and Theorem C

applies. .
If D Im+4 then it follows that
4 ¢
M:Q_L\)t ) MmtA= '.’)r‘u»t | m~2 = 2 A
or
&
m = 2Q4LL , m+1 = 2% y m+ 2= 2 w>
whence

) Z(wz_'_td) = ’543'&.:‘:4 =(2“~)£ in integers avz4, v, w >4,

LEMMA 1 ( Lubelski [4€], (1935), case 3l x~~ ; Gydry (127
(1966), case 3 |xX+4 ). Let P >5 be a prime and < >1

.an integer. If

£ £z £
X M = CZz |

for some relatively prime non-zero integers ¥, MR ( with

some technical conditions on X, 4, % and < ) such that

%1l x -4 or 2 | x +44 then

(5) 34 24 (ool £27).

This result was proved by means of Einsenstein reciprocity

theorem in cyclotomic fields.
Using Lemma 1, one can show that ("4) implies (§) .

LEMMA 2. If f > 5 is a prime with (§) and AL < 2.30
then £ =44 or f=- 400 Ggo0 3.

For this lemma, see e.g. [22]. |
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LEMMA 3 ( Bennett and de Weger (22 ). Let a,,‘L:, L be
integers with b o s 4 and 3¢ <43 or £>2A43F .Then
the equation

lax®_ b»’azl = A

has at most one solution in positive integers X, “+ .

This was proved by combining Baker’s method w1th some results

on hypergeometrlc functions and some computational methods.

"Now (4) implies | 2u?® — 3452 =41 which has solution
A= > = 4 . Hence, by Lemma 3, (u) ~ has no solution with £<4%
or £ >33} . Further, by Lemma 2, (W) is not solvable for
AT <« £ &34 ’-1» and Theorem D follows.

Theorems B, C and D together confirm the conjecture of Erdds,

that is provide the complete solution of equation (2).

THEOREM 1 ( Erdds, case kzh ; Darmon and Merel, case )4:25
Gydry, case k=12 ). Apart from the case k = £ =2 '
equation (2) has the only solution (5_;’0) = 41-102‘

Thisjtheorem which may be regarded as a joint'result of

Erdds, Darmon, Merel and the present author was published in my k

paper [4‘5]

Quite‘ recently Filakovszky showed that eqvuat’ion‘

(6) (m+t—4)'—‘—bx£ in integers /n.,lazd, k.X,e?_Z

has no solution if k > 20O or if £=2 and k=29 .
Further, by means of Baker’s method Terai 9dave expllClt upper
bound. for £ in the following cases: k = 2, b = : k= 2
b = P ® 3 prime ; k= 3, b= PM)'P>?> prlme.fFinal]_y,
using Nagell)s results on the equatlon A x >4+ 5/*3 C he proved
that (m,x )z (3,4) is the only solution if k = 2 \p 3 = 3
and (ge) has no solution if k=3 ,b= (P>3 prlme ),{ 2.
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3. Common generalizations of equations (1) and C'L)

- Equation

(3) m(m.yz\).u(m-\-k—-'i\ :_L>><.Z in integers M.B.x?_")
k, L 22 with P(pyek,
‘b £-th power free

is a common generalization of equations (4) and (2) . For b=4
this is just equation (4) , while for b= 4£-th power free part
of k! We get equation (2) . It would not be necessary to
assume that b is z{-th‘power free. However, under this assumption
. the right hand side of (1) has ‘a unique representation which
will be useful later. ‘ |

In the last section some further generalizations will also

be discussed. Equation (:,L) and those generalizations were studied

by Shorey, Tijdeman, Saradha, Filakovszky , Hajdu, Brindza, Ruzsa
and others; see the survey papers [3'1], {3473 , (3571 ,Ca.‘-l»J,[/isj and the
references given there. ,

_As we have seen before, for k = b = R =2 equation (4—)
has infinitely many solutions. |

For given K , equation (#+) has only finitely many solu-
tions with P(x)< k and all them can be easily determined. Indeed,
denote by P(k)\ the least prime with P(k) >k . 1Itis a
consequence. ( cf. [14] ) of Sylvester)s theorem mentioned above
that (m,k,b,x,£)is a solution of (%) with P(x)2k |
if and only if » € -{4,2, cemy P(k)—k } . This means that m =41
is always a solution fqr each k ; k! can be written in the

form l:. * £ with the properties required.

| o (3 —
Example. We have F“') = and P > = 8 , hence all
solutions (m,k, b, x,£) of (F) with k= 2,3, P(x)sk

are as follows:
(1) 2,-9_,4>£>,Q.), (4,3,6,1,8£22),(2,3,24,4,821),
(Z,S,G,Q\l)p (2,3,3%,2,1), |
Therefore more ipteresting are those solutions (™, k, ]5» % -K)

for which P(x)>|-< .

Saradha 25 ] has recently proved the following.
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THEOREM E ( Saradha (251). For \-4 44, egquation (+) has
no solution with P(x)> k . |

In fact, she proved a more general result which will be pre-
sented in the last section. In her proof she combined Erd&s method
with some results of Shorey and Tijdeman and some computations.

It should be remarked that the method of proof of Saradha cannot
be applied to the case k < L . |

Independently, Filakovszky and Hajdu ( unpublished ) proVed _
Theorem E for £ = 2 . '

Recently I have extended in [14 ) Theorem E to the cases
k=2 ana 3 .

THEOREM F ( GySry (44) ). Apart from the case k=b=1=2,
for k £ 3 equation (3) has the only solution (m,k ,b,x,¥8)=
(48,3 ,6,440,2) ¥ith P(x)>k .

For k_: 2 , this theorem can be proved by means of the
tools used in the proof of Theorem D above. In [44]3 I gave a

different proof which is based on the following

LEMMA 4 ( Gydry ([44]) ). Let 2> 3,420 be integers.
Equation

£

¢8) 'M.,L'\"‘: 2" ar in positive integers 4,
is solvable only if o = 4 , when (am )= (4,4) is the

only solution. Further, equation

(3) M_Z,A = 2"" 'Lr‘e' in positive integers A -

has no solution.

The case ol = O of Lemma 4 is trivial. For A odd,
we have to distinguish two cases. For ol = 1 , the above-pre-
sented theorem of Darmon and Merel f2] applies. For &£ >4 ,
one can apply the following recent theorem of Ribet [237]: if £=z=72
is a prime and o4&  an integer with 2 4 A < 8_ » then equation

x X +»}z = 252t

has no solution in non-zero relatively prime integers X, %% z.,
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‘Ribet proved this theorem by means of an extension of Wiles’

method.
For Z even, one can proceed by induction on o and

Lemma 4 follows.

Now the case k =2 of Theorem F easily follows by
observing that (3F) implies (g8) or (9) . ‘
The case k = 2 of Theorem F is more complicated,

several subcases ( £ :.2 ; L > 2 and 33| ,; M+ _
or m+2 , etc. ) had to be distinguished before the appli-

cation of Lemma 4.

Theorems E and F together give the following final result
( cf. ['411] ) which provides the complete solution of equation (;L)
under the assumption P(x) >k .

THEOREM 2 ( Saradha, case k = L ; GyS8ry, case k3 ).
Apart from the case k=b=z= L =2 , equation (3) has
only the solution ‘(m.,k, l>,><, {) = (.qg'g'g',“_'o’ 2.)
with P(x)> k.

We show now how to deduce Theorems A and 1 from Theorem 2.

Deduction of Theorem A ( Erdds and Selfridge ) on equation (4)

from Theorem 2 :

For k = £ = 92, equation
(1Y o (med) oo (mak-)=x® | mza,kx, L2

is not solvable. By Theorem 2, no solution exists with P(x) > k.
If ('n,l(,x,—e.) is a solution of (4) with 'P(x)gk ,
then Sylvester’s theorem implies that m <« k , whence m < 2%

: 2.
By Chebyshev’s theorem there exists a prime P with :
m+ k cpem4 k-1 , hence Pllr(m+ad..i (mtk-1)

2.
which is impossible. This proves Theorem A.

Deduction of Theorem 1 ( Erdds, Darmon, Merel, Gydry ) on

equation (2_) from Theorem 2:

Equation = (2 ) takes the form
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m(m44) .. (,.\,.\. k—4) = l(! X{.

This can be written in the form (q.) with the choice b = AL-th
free part of k! . By assumption o> lk+4 , hence Sylvesterls
theorem implies that P(x) >k . Now Theorem 1 follows immediate-
ly from Theorem 2.

4. Further generalizations

Finally, we consider the following generalizations of equa-

tions (4) and (3) , respectively:

(40) m(mayol)... (M-l-(k-d)ol,):)({ in integers m ol 24,k23,x, {22
with (’7\-|°L)::4

and

(AA) /V\,(mﬁ—o{.)...(m-‘-(k—")ol)sz{ in integers m,d ,b 21, k23,
| X, Lz 2 with (m,ol)=d, P(L)ck.

In these general si&ugtions there are several deep but only
partial results. For references, we refer to fl,j',[3l'],[34],[35]’£2:}_].
It is éasy to see that both for k= 2 and without the
assumption. (m‘cl,) = A these equations have infinitely many
solutions. As is easily seen, for (| , £)=(2,2) both equations
have infinitely many solutions. By a theorem of Euler, (4o) has
no solution for (k,£)= (4,2). The same result was proved by
oblath {20),C247 in 1951 for (k,&L)=(5,2), (3,3), (3,h)
and (%,5) . / , ‘ ,
By a conjecture of Erdt’is, (10) implies that k = .
It has been recently proved by"Saradha [2s1 that for d <@ r

equation (40) "has no solution. Further, as was showed by
Saradha ( [2(;] , case d < 2 2 ) and Filakovszky and Hajdu
( (10] , case 23 ¢l < 30 ), for £=2 (maol, k,x) =
(48,%,3,420) and (4,24,3,35)  are the only

solutions of (40) ~with ol ¢ 30 . A }
- Recently I proved (457 that for k =3, L >2 , equation
(40) has no solution.
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Tijdeman [34] showed that (44) has infinitely many solu-
tions for (k,0)=(3,3)and (4,2) . Further, he conjectured
that (44) has only finitely many solutions with k+ & >¢ .

In a series of papers Shorey and Tij deman ob{:a‘i’ned a lot of impor-
tant results on equation (44) . They showed £293,(317 that if
d> 4 and (”i,ol,k)*C9_|;,3\"then .

Pl (m+el) o (mt(h=-4)dd))> k.

Together with Theorem A this implies that equation (410) has no
solution with P(x) 2 k . Further, Shbrez and Tijdeman proved
( cf£.[2%8),[30] ) that (44) implies that if £ is a prime
and Lk > Co then

0-2 A |
oA, 2 max {c4|< : ‘L(C"‘e""a o k }

and

P(cl)s s Loghk Loglogk |, £ 2 0k J2ogl |
- where 5{4 is the maximal divisor of ol such that all prime
factors of d 4 are =4 (maod £), () denotes the number of
distinct prime factors of o , and Ce to CH are effectively
computable positive absolute constants.
| Saradha [257] has recetly showed that for k =y and oLﬁC,
equation (44) has no solution provided that P(x)>k if ol=4,
Further, Saradha ( [26], case & ¢ 22 ) and Filakovszky and
Hajdu ( Cdo] ’ case 23 < d £ 230 ) determined all ( finitely
many ) solutions of (44) for R =2 and ol €30 . .

| Furthermore, I have recently proved [45]3 that for k=3,£>2,

equation (44) has no solution with P(b) < 2. . »

Finally, it should be remarked that the even more general

equation

(M-i-ot,ot,‘) ... (ﬂ\.-‘-—OLd,.k) = L)X{
where 0(4) ooy oLL_ are distinct integers with ©O¢ oL4,..-,0L£<L,

was also studied by Erdds , Shorey, Tijdeman, Saradha and others
( cf. (343 ,[253,[23]).
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