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Introduction to the theory of error-correcting |
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Tsuyoshi Uehara ( L& @)
Saga University

0. Introduction

In this note we introduce the basic theory of error-correcting codes, showing especially
the constructions and decoding processes of Hamming codes and Reed-Solomon codes. We
are also concerned with simply constructed algebraic-geometric codes, and give a result

on their minimum distances.

1. Codes, Encoding and Decoding

In this section we denote by F' a finite set and call it an alphabet. Fix positive integers
k,n with k <n. Let S C F* and C C F™ and call them a source and a code, respectively.
An encoding rule ¢ is a bijective mapping from S to C, and a decoding rule § is a mapping
from a set C' with C C C' C F™ to C. The following diagram provides a rough idea of

an information transmission system.
£ ! é et
S—C-—C —C—38

A sender sends a source symbol z € S through a channel to a receiver. If an error is
caused by noise on the channel, the receiver will receive a wrong symbol. Therefore using
an encoder one transletes the symbol z into a codeword w = ¢(z) € C. From the received
word w' € €' a decoder induces a decoded word w” = 6(w’) € C, and finally the receiver

get the symbol 2" = e71(w"). To see a simple example we set
F=5={0,1}, C={(0,00),(1,1,1)} ¢ =F>

For instance suppose that 0 is sent and is encoded as (0, 0,0), and that the received word is
(0,0,1). The decoder decides by majority that (0,0, 0) is sent, and gives 0 to the receiver.

Those codes constructed for the above purpose are called error-correcting codes.
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2. Linear Codes

In what follows F' = GF(q) denotes the finite field with g elements. For a fixed positive

integer n we consider the linear space
F*={(zy, - +,2,) : z; € F}.

If C C F™ is a subspace of F™ then we call C a g-ary linear code of length n. When
referring the length and the dimension & = dim C of a g-ary linear code C we call C a
g-ary (n, k) code. Any element of a code is called a codeword. The information rate R(C)
of C is defined as k/n. If C is an (n, k) code, we may take a linear mapping ¢ from F* to
C as an encoding rule. Hence there is no problem about encoding for linear codes.

For any vectors z = (z1,--+,2,) and y = (y1," -+, ¥n) in F™ we denote by d(z,y) the
number of indices 7, 1 < ¢ < n such that z; # y; and call it the Hamming distance of
and y. The minimum distance d(C) of a linear code C C F™ is defined as

d(C) = min{d(z,y) : z,y € C, z # y} = min{d(z,0) : 0 #z € C}.

The minimum distance of alinear code has a close relation to its ability of error-correcting.

In fact, if a codeword z € C is sent and is received as z’ € F™ and if

d(z,2) <t(C) = [(d(C) - 1)/2],

then any codeword y € C with y # z satisfies d(y,z') > d(z,z'), i.e. z is the nearest
-codeword to z’. This implies that C can correct at most {(C) errors. We say also that C
is ¢t(C)-error-correcting.

Roughly speaking, an (n,k) code C is "good” if both R(C) and d(C)/n are large.
Various bounds for d(C) are known. In particular, Singleton’s bound [6] (cf. [5]) says
that |

dC)<n—k+1.

If the equality holds in the above, C is called a mazimum distance separable (MDS') code.
A main purpose of study of error-correcting codes is to construct explicitly a class
of linear codes C with k/n, d(C)/n large and with good decoding algorithms. - For the

general theory of error-correcting codes, for intance see [5], [7].
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To explain a method of decoding of linear codes, we give a simple example in this section.

We denote by L{vy, -, v,] C F™ the subspace of F™ spanned by vectors vy, -, vm € F™.

Let FF = GF(2) and define a binary linear code C by
¢ = I[(1,0,1,0,1,0,1), (0,1,1,0,0,1,1), (0,0,0,1, 1, 1,.1)]%
Namely, a vector (z1,-+-,77) € F" is a codeword of C if and only if
m1+:c3_+x5+x7=:c2+:z:3+:c6+m7=2:4+x5+:1:6+x7=0. ‘

We easily see that C is a binary (7,4) code and has the following 16 codewords.

(0) 0) 0) O) 0) 0) 0)) (1?01 0’ 0) O) 1) 1)7 (07 1) 0)0) 1’ 0) 1)’ (1) 17 0) 0) 111170)’
(0,0,1,0,1,1,0), (1,0,1,0,1,0,1), (0,1,1,0,0,1,1), (1,1,1,0,0,0,0),
(0,0,0,1,1,1,1), " (1,0,0,1,1,0,0), (0,1,0,1,0,1,0), (1,1,0,1,0,0,1),
(0,0,1,1,0,0,1), (1,0,1,1,0,1,0), (0,1,1,1,1,0,0), (1,1,1,1,1,1,1).

Then the minimum distance d(C) of C is equal to 3 and hence C is single-error-correcting.
)

This code is called a Hamming code. Let 2’ = (24, - -, z7

z € C. We first compute the three values

! 1 ! ! ! ! ! ! ! ! ! !
S1=%;+ 23+ 25+ 27, S2=2y+23+25+2T;, S3=2z,+2T5+2Tg+ 2y

be areceived word of a codeword

in F' which are called syndromes of z'. Next we compute r = s; 4 25, +453 in the ordinary

way. The decoding is performed as follows: If r = 0 we conclude that 2’ has no error. If

r # 0 we correct the r-th component z.. The trick is simple. One can see that z is a

summand only of those sums s; equal to 1. For example suppose that z' = (1,0,1,1, 1,' 0,0)

is a received word. We compute the syndromes s; = 1, s = 1, s3 = 0. Hence r = 3. We

decode z' to (1,0,0,1,1,0,0).

4. Reed-Solomon Codes

We introduce an important linear code which is now practically used.

Denote by aj,ay,- -+, a4 € F the elements of F = GF(q). For every polynomial f €

F[X] over F we put
¢(f) = (f(al)) f(aZ)J R f(aq)) € F1.
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It is clear that L[y(1), ¥(X),---,9(X7!)] = F9. We define for 1 < k < ¢ — 1 a linear

code

C = Cla k) = L[p(1), ¥(X), - -, (X T+ 1)

and call it a Reed-Solomon (RS ) code. Then C is a g-ary (g, k) code. It is easy to see
that '

C= L[@b(l), ¢(X), T :¢(Xk—l)]'
By Singleton’s bound we have d(C) < ¢ — k + 1. On the other hand, if z = ¢(f) € C

with f € F[X] then degf < k — 1 and hence d(z,0) > ¢ — k + 1. This means that
d(C) > qg—k+1. Thus d(C) = ¢ — k + 1 and so C is an MDS code. For example the
minimum distance of C(8,4) is equal td 5, i.e. it is double-error-correcting.

We write GF(8) = {0,1,a,---,0°} with o® = o+ 1, and put a; = 0,0, = 1,a; =
@, --,ag = a®. To explain a method of decoding of RS codes, let C = C(8,4) and
suppose that

w' =(1,1,0¢%1,1,1,0,1)

is a received word of a codeword w € C. We write w' = w + e with e = (ey,---,eg). For

any vector z € GF(8)® we define

si(2) = (z,9(X")),

where (z,y) = z1y1 + -+ + 2,9, denotes the inner product of z = (z1, -+ ,z,) and

Yy =(y1, ", ¥n). By definition
si(w') = si(w) + si(e) = si(e)

is valid if 0 < ¢ < 3. As the first step of decoding we compute

so(e) = so(w') = a®, s1(e) = s;(w) = o, sa(e) = s5(w) = 0, sz(e) = s3(w') = o,

These values are also called syndromes of w'. Assuming that the number of errors is at

most two, i.e. d(e,0) < 2, we put

9(X) = H (X —a;)=cop+c1 X +c X2

ei#0
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with co, ¢1, c2 unknown. Since e;g(a;) = 0 for any 7 we have

8 .
(e, ¥(g(X)X7)) = > eiglai)al = cos;(e) + c15541(e) + casj42(e) = 0.
i=1
We secondly solve the simultaneous equations
6030(6) +'cl(e)sl(e) + C232(6) = CoSl(C) + C132(€) -+ 6253(6) =0

to get co = c1 = a®, c; = 1. Hence we see that g(X) = X?+a8X +af = (X —a)(X — ).
This means that the errors occured at third and seventh components, i.e. e3, e; # 0. We

finally find the values e3, e7. Solving

sole) =es+ter=0a® si(e) =esa+ea® =a°

we obtain e3 = o, e; = 1. Thus we decode w' as
w=uw—e=(1,1,0°1,1,1,0,1) = (0,0,2%0,0,0,1,0) = (1,1,1,1,1,1,1).

There are various methods of fast decoding of RS codes. We remark that the length of
the RS code C(g, k) does not exceed q. This is a defect of RS codes.

5. Algebraic-Geometric Codes

In 1981 Goppa [2], [3] presented a new class of linear codes applying the theory of
algebraic curves, which are called algebraic-geometric (AG ) codes. Let V be a non-
singular projective curve over F' = GF(q) of genus g. We take a positive integer n
less than the number of F-rational points of V. Then Goppa’s theorem guarantees the

existence of g-ary linear codes C such that
E(CY+d(C)>n+1—g,

where k(C), d(C) denote the dimension, the minimum distance of C, respectively. It is
possible to find many g-ary AG codes each with length larger than ¢. For the general
theory of AG codes for instance see [4], [7], [8].

Recently, Feng and Rao [1] proposed a method of simple construction of AG codes. We

are concerned here with such AG codes. Let Xy, -, X,, be independent indeterminates
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and put X = (X1, -+, X;n). Denote by F[X] = F[X;,---, Xn] the polynomial ring over
F = GF(q). We define

I'={(z1,"",2m) : 2 € Z, >0}

For every a = (a1, +,am) € I' we put X® = X' ... X2m. We further consider a mono-

mial ordering < on X which is a total ordering of the set {X* : a € I'} such that
(1) X241 = 1<X%, (2) X°<X* = X" X" (bel)
Take n distinct points Py, ---, P, € F™ and put
D={P,Py,---, P}
For any polynomial f € F[X] we define |

W(f) = (f(P), f(P2), -, f(P)) € F™.
Then 9 is a surjective linear mapping from F[X] to F™.
Propositioﬁ 1. There ezist points b(1),---,b(k) € I' such that
{p(X%) s a€lyny U - U Tywy}
is a basis of F™, where [y ={a € : a; <b; (1 <i<m)} forany b= (b1, - ,bm) €.

We now state the definition of AG codes by Feng and Rao. We fix a monimial ordering

< on X and write

B={X*:a€lyny U - UTlynt={fufa- ", fa}

where fi < fa <+ < fo. Let By={f1, -+, i} with1<Il<n-—1. Forany k, 1<k<n
we define a g-ary linear code C(D, B, ;) by

C(D, Baws) = LW(FL), 9(fa), -+ b Fomi)]*

and call it an AG code in the sense of Feng-Rao. This is a ¢g-ary (n, k) code.

In the rest of this note we will give a result on the minimum distances of AG codes.

From now on let m = 2. For any ¢ € F we denote by m(z) the number of points (a,b) € D
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such that a = z. For simplicity we suppose that either m(z) = 0 or m(z) = s holds for
every z € F, where s is a fixed positive integer. We also denote by ¢ the number of z € F

such that m(z) = s. In this case we have n = st and we may take B as
B={X{X] :0<i<t-1,0<j<s~1}={fi,fa -, fu}-

By the definition of B there are elements ¢; € F such that

n

P(X3) =2 c(f)-

=1 )
For any polynomials g,h € F[Y] in one indeterminate Y let M(g, ) be the number of
those points (a,b) € D such that g(a) # 0, h(b) # 0, and put |
M;; = min{M(g,h) : g,h € F[Y], degg =i, degh = j}
for 1,7 > 0. If fy = XiY] € B then we define M; = M; ;.

Proposition 2. Let C = C(D, B,—x) with 1 < k < n. If fiy < X5 is valid where
o = max{i : ¢; # 0}, then

d(C) < d(C) = min{M,,- - -, Mi}.

We now consider a polynomial H (X1, X,) = g(X1) + h(X3), where g(Y), h(Y) € F[Y].
Suppose that H(X;, X,) satisfies

(1) r=degg>1, s=degh>1and(rs) =1,

(2) the number of solutions of H(a, X3) = 0 is equal to 0 or s for any a € F,

(3) the number of solutions of H(X1,b) = 0 is equal to r for some b € F'.
Furthermore we put D = {(a,b) € F? : H(a,b) = 0}. Then m(z) = 0 or m(z) = s.
Hence in this case we can write D = {P;,---, P} with n = st, where ¢ is the number of

:z:eruchtha,tm(z)zs,a,ndtakeB:{X{X% :0<1<t—-1,0<i<s—1}

Theorem. Let the assumption be as above and put C = C(D, B,—x) with1 <k <n-1.
Then d(C) = d'(C) 1s valid for a certain monomaial ordering on (Xy, X3).

We remark that if (1), (2), (3) are all valid then for f; = X} X3 we can compute

(t—1)(s —7) when i>t—r,

My=M,=1{
’ {s(t—r—i)+r(s——j) when 1<t—r.
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For example, when ¢ = p?, H(X:, X5) = X'+ X2+ X,, the conditions (1), (2), (3) are all
valid with r = p+1, s = p, t = p? = ¢. Hencen = p’. In this case the associated AG codes
C(D, B,_x) are called Hermitian codes. Such a Hermitian code is originally one of Goppa’s
AG codes induced from the projective curve V defined by X?*! + X, X2 + X?X, = 0.
The minimum distances of Hermitian codes are known. Our theorem covers this result.
In particular let ¢ = 9. Then C = C(D, By) is a (27,20) code. Since the genus of V is
3= (4—1)(3 — 1)/2, by Goopa’s theorem we have d(C) >5=27+1-3-20. On the
other hand by Theorem we can deduce d(C) = 6. | '
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