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ABSTRACT J. C. Lagarias showed the set of prime numbers which divide
some Lucas number $L_{n}$ has positive density using Hasse’s method [H]. In his
paper he found several results for certain other special second-order linear
recurrences [L], [W]. So we will research similar phenomena for slightly
generalized second-order linear recurrences.

1 Introduction
In this note we will try to generalize a result of Lagalias on some second-order linear
recurrences. Our method will be controlled by Hasse’s one. Then we have to check
whether these recurrences satisfy Hasse’s conditions or not.

Now, any irreducible second-order recurrence $\{U_{n}\}$ whose terms $U_{n}$ are rational num-
bers can be expressed in the form

$U_{n}=\alpha\theta^{n}+\overline{\alpha}\overline{\theta}^{n}$,

where $\alpha$ and $\theta$ are in the quadratic field $K$ generated by the roots of the characteristic
polinomial of $\{U_{n}\}$ , and $\overline{\alpha},\overline{\theta}$ are the algebraic conjugates of $\alpha,$

$\theta$ in $K$ .
Hasse’s conditions are as follows:

(1) $\theta/\overline{\theta}=\pm\phi^{k}$ , where $k=1$ or 2 for some $\phi$ in $K$,
(2) $\overline{\alpha}/\alpha=\zeta\dot{\psi}$ , where $\zeta$ is a root of unity in $K$ and $j$ is an integer.

We put $S_{U}=$ {$p:p$ is a prime and $p|U_{n}$ for some $n$ }. These particular recurrances
$\{U_{n}\}$ , which satifiy the above conditions (1) and (2), have a special property.

Definition 1 A set $\Sigma$ of primes is a Chebotarev set if and only if there is some finite
normal extension $L$ of the rationals $Q$ such that a prime $p$ is in $\Sigma$ iff the Artin symbol

$[ \frac{L/Q}{(p)}]$ is in specified conjugacy classes of the Galois group $Gal(L/Q)$ .
‘

Definition 2 Density $d(S_{U})$ is defined
$\lim_{Xarrow\infty}\frac{\# S_{U,X}}{\#\mathrm{P}_{X}}=d(S_{U})$ ,

where $\# S_{U,X}=\#\{p;p\in S_{U}p<X\}$ and $\#\mathrm{p}_{X}=\#$ {$p;p$ is a prime, $p<X$} $\sim\frac{X}{\log X}$ .
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Property 1 Both the set $S$ of primes and its complement

$\overline{S}=$ {$p:p$ is a prime and $p\not\in S$ }
have a decomposition into disjoint countable unions of Chebotarev sets of primes. That is

$S= \bigcup_{=j1}^{\infty}S^{(j})$ , $\overline{S}=\bigcup_{1j=}^{\infty}\overline{S}^{(}j)$ ,

where $S^{(j)}$ and $\overline{S}^{(j)}$ are Chebotarev sets. Then the densities of the sets satisfy

$\sum_{j=1}^{\infty}d(S(j))+\sum_{j=1}d\infty(\overline{S}^{(j)})=1$ .

If $S$ is any set of primes having Proper.ty 1, then $S$ has a natural density $d(S)$ given
by

$d(S)= \sum^{\infty}j^{-}\neg 1d(s(j))$ .

2 Known results
Hasse and Lagarias obtained the following prime densities for several types of sequences:

Theorem 1, (H. $\mathrm{H}\mathrm{a}s\mathrm{s}\mathrm{e}’$ [.H]) For the sequence $\{V_{n}\}=\{2^{n}+1\}$ , the set of primes

$S_{V}$ $=$ {$p:p$ is a prime and $p$ divies $2^{n}+1$ for some $n\geq 0$}
$=$ {$p\in \mathrm{P};p|V_{n}$ for some $n$ }.

has density $d(S_{V})= \frac{17}{24}$ .

Hasse’s result actually covers all the sequences

$\{A_{n}\}=\{a^{n}+1|n\geq 0\}$ ,

where $a$ is an integer $\geq 3$ , and the density of the associated set $S_{A}=\{p\in \mathrm{P}$ :
$p|A_{n}f_{or}$ some $n$ } is

$d(S_{A})= \frac{2}{3}$ .

Theorem 2 (J. C.
$\mathrm{L}\mathrm{a}\mathrm{g}\mathrm{a}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{S},.[\mathrm{L}].$

)
$For\backslash \cdot$

the sequence
$.\{L_{n}\}(L_{n+1}\backslash ‘=.\cdot.L_{n}+L_{n-1}..\backslash \cdot’ L_{1}=2.’.\cdot.L_{2}=4$

1), the set of $pr\dot{i}m.e,\cdot s\backslash$

.‘. $S_{L}--$ {$p\in \mathrm{P}$ ; $p|L_{n}$ for some $n$ } . .. $S,$ $\backslash 1$

has density $d(S_{L})= \frac{2}{3}$ .
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Theorem 3 (J. C. Lagarias [L2]) For the sequence $\{W_{n}\}(W_{n}=5W_{n-1}-7W_{n-2},$ $W_{0}=$

$1,$ $W_{1}=2)$ , the set of primes

$S_{W}=$ {$p\in \mathrm{P}$ ; $p|W_{n}$ for some $n$ }

has density $d(S_{W})= \frac{3}{4}$ .

Lagarias considered
$\{A_{n}(m)\}$ , $\{B_{n}(m)\}$ ( $m$ : fixed)

where both series admit the condotion:

$U_{n}=mU_{n-}1-U_{n-2}$

with $A_{0}(m)=B_{0}(m)=1,$ $A_{1}(m)=m+1,$ $B_{1}(m)=m-1$ , to which Hasse’s method is
applicable. In the cases of fields $K=Q(\sqrt{m^{2}-4})$ , for the following sets of primes:

$S_{A}(m)=$ {$p\in \mathrm{P};p|A_{n}(m)$ for some $n$ },
$S_{B}(m)=$ {$p\in \mathrm{P};p|B_{n}(m)$ for some $n$ },

it is known that $d(s_{A}(m))=d(sB(m))= \frac{1}{3}$ .

3 Theorem
Let

$\{U_{n}\}(U_{n}=mU_{n-1}+U_{n-2}, U_{0}=2, U_{1}=m)$ ,

be a second-order linear recurrence, where we assume that $D=m^{2}+4$ is a prime dis-
criminant of $K=Q(\sqrt{D})$ . Then we have

’

$\# g$

Theorem 4 For the sequence $\{U_{n}\}(U_{n}=mU_{n-1}+U_{n-2}, U_{0}=2, U_{1}=m)$ , the set of
$pr\dot{i}mes$

$S_{U}=$ { $p\in \mathrm{P}$ ; $p|U_{n}$ for some $n$ }

has density $d(S_{U})= \frac{2}{3}$ .

Remark 1 In the case of $m=1$ , the theorem above coincides with Theorem 2. We can
prove Theorem 4 by a similar way to Theorem 2.
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