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Recent developments of computational number theory is very much influenced by cryp-
tography. Especially, several methods have been introduced to factor a large integer. In
this note, a brief survey on the number field sieve, shortly NFS, will be given as one of
the most important methods among them. The contents are:
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Notations and References.

Let $n$ always denote a large natural number to be factored. By the run time of a method

of factoring, we mean the worst case time complexity for $narrow\infty$ , in many cases heuristic,

conjectured or expected one. To estimate the complexity, we define

$L_{x}[u, v]=\exp(v(\ln x)^{u}(\ln\ln X)^{1-u})$

for real numbers $x,$ $u,$ $v$ with $x>e$ . When $x$ is large, the function $L_{x}[u, v]$ is a monotone

increasing function for $0\leq u\leq 1$ and interpolates between powers of $x$ and powers of
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$\ln x$ . More precisely, we have

$L_{x}[0, v]=(\ln X)^{v}$ , $L_{x}[1, v]=x^{v}$ ,

ln ln $L_{x}[u, v]=u$ ln ln $L_{x}[1, v]+(1-u)\ln\ln L_{x}[0, v]$ .

If $0<u.<1$ , the order of $L_{x}[u, v]$ is said to be subexponential in the size $\ln x$ of $x$ .

A good introduction to the NFS is given in

A. K. Lenstra, H. W. Lenstra, Jr., M. S. Manasse, J. M. Pollard, The factorization of the
ninth Fermat number, Math. Comp. 61 (1993), 319-349.

Basic facts, improvements, related topics, references and a history of the NFS can be

found in the lecture note

A. K. Lenstra, H. W. Lenstra, Jr. $(\mathrm{e}\mathrm{d}\mathrm{s}.)$ , The development of the number field sieve, Lecture
Notes in Mathematics 1554, Springer-Verlag, 1993.

About implementation of the general NFS, shortly GNFS, we reffer to

J. Buchmann, J. Loho, J. Zayer, An implementation of the general number field sieve, in
$\mathrm{C}_{J}\mathrm{B}\mathrm{Y}l\mathrm{F}\mathrm{T}\dot{\mathrm{o}},93$ , Lecture Notes in Computer Science 773, Springer-Verlag, 1994, 159-165.

The multiple polynomial GNFS is introduced in

M. Elkenbracht-Huizing, A multiple polynomial general number fields sieve, in ANTS-II,

Lecture Notes in Computer Science 1122, Springer-Verlag, 1996, 99-114.

Factoring the 130-digit number RSA130 by the GNFS through a World Wide Web sieving

project is reported in

J. Cowie, B. Dodson, R. M. Elkenbracht-Huizing, A. K. Lenstra, P. L. Montgomery, J. Zayer,.
A world wide number field sieve factoring record: on to 512 bits, in Asiacrypt ’96, Lecture

Notes in Computer Science 1163, Springer-Verlag, 1996, 382-394.
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An application of the NFS to the Discrete Logarithm Problem, shortly DLP, is discussed

in

D. Weber, Computing discrete logarithms with the general number field sieve, in ANTS-II,

Lecture Notes in Computer Science 1122, Springer-Verlag, 1996, 391-403,

by which the $\mathrm{M}\mathrm{c}\mathrm{c}_{\mathrm{u}\mathrm{r}}1\mathrm{e}\mathrm{y}_{\mathrm{S}}$

’ challenge DLP-129 for a 129-digit prime finite field was solved

on 25 January, 1998.

For further bibliographies, see these papers.

1. A Summary of Factoring Methods.

A factoring method is classified to a deterministic one or a probabilistic one. The latter

expects either some “smooth” prime factor of $n$ or some “smooth” non-trivial congruence

modulo $n$ . We summarize here the run time of the major methods.

There are not so many deterministic methods. The run time of the classical trial division

is $O(L_{n}[1,1/2])$ . As an application of the fast Fourier transform, there is a method of run

time $L_{n}[1,1/4+o(1)]$ . The run time of the class group method is $L_{n}[1,1/5+o(1)]$ under

Extended Riemann Hypothesis.

Expecting a “smooth” prime factor $p$ of $n$ , several probabilistic methods such as $\rho-$

method, $(p-1)$-method, $(p+1)$-method, etc. are introduced. The elliptic curve method

is the most significant one among them, and its run time is $L_{p}[1/2, \sqrt{2}+o(1)]$ .

All probabilistic methods expecting a “smooth” congruence modulo $n$ have the same

scheme of algorithm as will be described in the next section. The run time of the ra-

tional sieve, the continued fraction method or the (multiple polynomial) quadratic sieve,
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shortly $\mathrm{Q}\mathrm{S}$ , is respectively $L_{n}[1/2, \sqrt{2}+o(1)],$ $L_{n}[1/2,1+o(1)]$ or $L_{n}[1/2,1+o(1)]$ .

The special NFS, shortly SNFS, is first introduced for $n=r^{k}-s$ with small natural

numbers $r$ and $|s|$ ; its run time is $L_{n}[1/3,$ $\sqrt[3]{32/9}+o(1)]$ . The GNFS for an arbitrary $n$

is then introduced; its run time is $L_{n}[1/3,$ $\sqrt[3]{64/9}+o(1)]$ , which is now slightly refined to

$L_{n}[1/3,$ $\sqrt[3]{(92+26\sqrt{13})/27}+o(1)]$ . So the GNFS is expected to be the fastest factoring

method for a general $n$ at present.

2. A General Scheme of Factoring.

We have the following general procedure which is common for all probabilistic methods

expecting a “smooth” congruence modulo $n$ .

Step $0$ . May assume that $n\mathrm{i}_{\mathrm{S}\underline{\mathrm{O}}}\mathrm{d}\mathrm{d}$ and is not a power of a prime by some other easier

precomputations.

Step 1. $\underline{\mathrm{S}\mathrm{e}\mathrm{l}\mathrm{e}\mathrm{c}\mathrm{t}}$the factor base $a_{j}\in \mathbb{Z}/n\mathbb{Z}(j\in J)$ over a certain finite index set $J$ .

May assume that $a_{j}$ are invertible in $\mathbb{Z}/n\mathbb{Z}$ , i.e. $a_{j}\in(\mathbb{Z}/n\mathbb{Z})^{\cross}(j\in J)$ , because otherwise

we are done.

Step 2. Collect relations

$V \subseteq\{(v_{j})_{j\in J}\in \mathbb{Z}^{\# J}|\prod_{j\in J}a_{j}^{v_{j}}=1\}$

so that the number $\# V$ of relations is slightly larger than $\neq J$ .

Step 3. Find dependencies $W\subseteq V$ such that

$\sum_{v\in W}v=2(wj)_{jJ}\epsilon\in 2\mathbb{Z}^{\# J}$
.
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For each $W$ , calculate $x\in \mathbb{Z}$ with

$\prod_{j\in J}a_{j}w_{j}=x$
mod $n$ .

Then

$(^{*})$
$x^{2}\equiv 1$ (mod $n$ ).

The probability of

$1<\mathrm{g}\mathrm{c}\mathrm{d}(X-1, n)<n$

is at least $1-2^{1-r}$ with $r>1$ by Step $0$ if $x$ as in $(^{*})$ is randomly chosen for the $n$ with $r$

distinct prime divisors, because every $x$ mod $n\in(\mathbb{Z}/n\mathbb{Z})^{\cross}$ of order 2 except $x=\pm 1$ gives

a non-trivial factor of $n$ .

3. The Idea of the General NFS.

The GNFS is based on the fact that it is possible to construct a monic irreducible

polynomial $f\in \mathbb{Z}[X]$ and a ring homomorphism

$\varphi$ : $\mathbb{Z}[X]/f\mathbb{Z}[X]arrow \mathbb{Z}/n\mathbb{Z}$

so that the sum of the absolute values of the coefficients of $f$ and the absolute value of the

representative for $\varphi$ ( $X$ mod $f$ ) in the open interval $(-n/2, n/2)$ are both small compared

to $n$ . Let

$\alpha=X$ mod $f$ , $m$ mod $n=\varphi(\alpha)$ with $m\in \mathbb{Z}$ .

Assume $\mathbb{Z}[\alpha]=\mathbb{Z}[X]/f\mathbb{Z}[X]$ is a principal ideal domain for simplicity. Then the steps in

the preceding section are as follows.
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Step 1. Let $J=U\cup P\cup G$ with some smoothness $\mathrm{b}_{0}.\mathrm{u}\mathrm{n}\mathrm{d}B\mathrm{C}\mathrm{h}_{\mathrm{o}\mathrm{S}}\mathrm{e}\mathrm{n}’ \mathrm{a}\mathrm{P}\mathrm{p}_{\Gamma}\mathrm{o}\mathrm{p}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{l}\mathrm{y}$ . Here

$U$ is a set of independent generators of the group $\mathbb{Z}[\alpha]^{\cross}$ of units, $P$ is the set of prime

numbers not exceeding $B$ and

$G=$ { $g\in \mathbb{Z}[\alpha]|$ the ideal $g\mathbb{Z}[\alpha]$ is a prime of $\mathbb{Z}[\alpha]$ with norm in $P$ }.

Set.the factor base $a_{j}=\varphi(j)(j\in J)$ .

Step 2. Search for pairs $(a, b)$ of coprime integers such that $a+bm$ is $P$-smooth and

$a+b\alpha$ is G-smooth:

$a+bm= \prod_{p\in P}p^{e(p})$ with $e(p)\in \mathbb{Z}_{\geq 0}$ ,

$a+b \alpha=u\in U\square u^{e()}\prod_{c}ugg\in e(g)$
with $e(u)\in \mathbb{Z},$ $e(g)\in \mathbb{Z}_{\geq 0}$ .

Since $\varphi(a+bm)=\varphi(a+b\alpha)$ , we get the relations

$\prod_{p\in P}\varphi(p)e(p)=\prod_{u\in U}\varphi(u)e(u)\prod_{g\in c}\varphi(g)^{e}(g)$
.

Collecting them we obtain $J$ .

Step 3. $\cdot$ This step can be $\mathrm{a}\mathrm{c}\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{i}_{\mathrm{S}\dot{\mathrm{h}}}$ed $\mathrm{b}\check{\mathrm{y}}$ ordinary large sparse matrix elimination

over $\mathbb{Z}/2\mathbb{Z}$ .

4. Related Problems.

There are many problems to be solved for practical $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ theoretical use of sieving

methods:

(i) On the general scheme above:
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(a) Is the map $\Phi$ : $\mathbb{Z}\# J\ni(v_{j})_{j\in J}\mapsto\Pi_{j\in Jj^{j}}av\in(\mathbb{Z}/n\mathbb{Z})^{\cross}$ onto? Namely, does the

factor base $a_{j}(j\in J)$ generate $(\mathbb{Z}/n\mathbb{Z})^{\cross}?$

(b) Does the relations in $V$ contain fundamental ones among $a_{j}(j\in J)$ ? Namely,

does $V$ generates $\mathrm{K}\mathrm{e}\mathrm{r}(\Phi)$ ?

If $(\mathrm{i}-\mathrm{a})$ and $(\mathrm{i}-\mathrm{b})$ are true, all the prime power factors of $n$ are computed in Step 3.

(ii) On the GNFS:

(a) How are $f$ and $\phi$ (or $m$ ) to be constructed? The condition $f(m)\equiv 0$ (mod $n$ )

is enough. The “base $m$
” method (or SNFS) constructs $f$ and $m$ with the

condition $f(m)=n$ .

(b) How is a set $S$ of coprime integer pairs satisfying

$\prod_{(a,b)\in S}(a+bm)\in(\mathbb{Q}^{\cross})^{2}$

and

$\gamma:=\prod_{b(a,)\in s}(a+b\alpha)\in(\mathbb{Q}(\alpha)^{\mathrm{X}})^{2}$

to be found so that Steps 2 and 3 are combined?

(c) How is an element $\beta\in \mathbb{Z}[\alpha]$ to be found such that $\beta^{2}=\gamma$ ?

(d) Of course, a more precise analysis of computational complexity is required.

(iii) Are there other formulations of a general scheme similar to that explained above?

(iv) On the GNFS again:
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(a) Related to the above (ii-b) and (ii-c), refine the sieving stage! This problem

will be one of the most popular problems in the near future.

(b) Apply the GNFS to the DLP!

(c) To solve small obstructions may be important! For example, we should know

how to select smoothness parameters.

(d) On a practical point of view, the implementation will be the most important!!!

5. A World Wide NFS Record.

The following is extracted from the $\mathrm{e}$-mail to Number Theory List, shortly NTL, by

A. K. Lenstra.

On Apri110, 1996, we found that

RSA-130 $=$

18070820886874048059516561644059055662781025167694013491701270214

50056662540244048387341127590812303371781887966563182013214880557

has the following factorization

RSA-130 $=$

$39685999459597454290161126162883786067576449112810064832555157243$ $*$

$45534498646735972188403686897274408864356301263205069600999044599$.

This factorization was found using the NFS factoring algorithm, and beats the 129-

digit record that was set on April, 2, 1994, by the QS factoring algorithm. . . .
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We used the polynomial

5748, 30224, 87384, $052\mathrm{o}\mathrm{o}x^{5}$ $+$ 9882, 26191, 74822, $86102X^{4}$

-13392, 49938, 91281, $76685X^{3}$ $+$ 16875, 25245, 88776, $84989x^{2}$

+3759, 90017, 48552, $08738X$ – 46769, 93055, 39319, 05995

and its root 125, 74411, 16841, 80059, 80468 modulo RSA-130.

Sieving was done on a great variety of workstations at many different locations: . . .

.. . We can say, however, that we would have spent about 500 mips years $(\mathrm{i}.\mathrm{e}.$ ,

10% of the computing time spent on the 129-digit QS-record)
$.$

$\mathrm{i}\mathrm{f}$ we had done all the

sieving on average workstations with at least 24 megabytes of memory. . . .

Such news can be available on the NTL if you issue the command

echo ’subscribe nmbrthry’ $|$ mail listserv@vml.nodak.edu

on a UNIX workstation. In Japanese, you can get it by

echo add $|$ mail tnt-request@math.metro-u. $\mathrm{a}\mathrm{c}$ .jp

from the mailing list of Tools on Number Theory, shortly TNT. Related programs, data

and papers are stored in the URL

$\mathrm{f}\mathrm{t}\mathrm{p}://\mathrm{f}\mathrm{t}\mathrm{p}$ .math.metro-u. $\mathrm{a}\mathrm{c}.\mathrm{j}\mathrm{p}/\mathrm{t}\mathrm{n}\mathrm{t}/$

including the proceedings of “Algebra and Computation”, 1995, 1997 in the directories

ac95, ac97.
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