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The space of Hilbert cusp forms and the representatnion‘
of SLy(F,)

RABEKET BMFEHR  (Yoshinori Hamahata)

1. Introvduction.

In this paper, we would like to report our result about the represen-
tation of SL2(Fy) on the space of Hilbert modular cusp forms. |

In his paper [2], Hecke considered the representation 7 of SLy(F,) on
the space of elliptic cusp forms of weight 2 for I'(p), and he determined
how tr m decomposes into irreducible characters. Above all, he showed
that the difference of the multiplicities of certain two irreducible charac-
ters yields the Dirichlet expression for hA(Q(y/—p)), the class number of
Q(\/_") The result was generalized to cusp forms of several variables,

, Hilbert cusp forms by H. Yoshida and H. Saito, and Siegel cusp
forms of degree 2 by K. Hashimoto.

Using his trace formula, Eichler [1] obtained another expression for the
difference of the multiplicities above. This expression can be rewritten
as the Dirichlet expression for h(Q(y/—p)). This Eichler’s result was
generalized to Hilbert cusp forms for real quadratic fields by H. Saito.

The purpose of this paper is to report that Eichler’s result can be
generalized to Hilbert cusp forms for totally real cubic fields. The plan
of this paper is as follows. In section 2 we review the definiton of Hilbert
cusp forms and then recall the results of Hecke, Eichler, and Yoshida-
Saito. In section 3, we recall Saito’s result on Hilbert cusp forms for real
quadratic fields. In section 4, our result is stated. In the last section,
the sketch of proof for our result is given.

The author is grateful to Professor S. Kanemitsu for giving him an
opportunity to write this report.

Notation. Let R,Q be the field of real, and rational numbers, re-
spectively, and I, the finite field of g-elements. For a number field K,
let h(K') denote the class number of K. Put e[e] = exp(2mie). By #(S5),
we mean the cardinality of the set S.
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2. Hilbert modular forms.

In this section we first review the definition of Hilbert cusp forms.
Then we recall the results of Hecke, Eichler, Yoshida, and Saito.

Let K be a totally real number field of degree n, and ok the ring of
integers of K. There exist n different embeddings of K into R. Denote
them by K — R, z+— z(® (z € K). Let $ be the upper half plane of
all complex numbers with positive imaginary part. The group .S Lao(og)

acts on $7, the n-th fold product of $), as follows: for v = (CCL Z) €

SLy(og) and z = (21, ,2n) € H™ we have

= a(l)zl —I_ b(l) N a(n)zn + b(n‘)
V2= s 7 a0 g, 1 d )

Let p be a prime ideal of K, and set

I'(p) = {7 € SLa(ox) | ¥ = 12 (mod p)}.

Then I'(p) also acts on $*. Let k be an even positive integer. For any

" 2) € SL?(OK)7 put jk(77'z) = H?zl(c(i)zi + d(i))—vk.

We now define Hilbert modular cusp forms.

Definition 2.1. A holomorphic function | f on 9" is called Hilbert
cusp form of weight k for I'(p) if it satisfies

i) f(72)ik(7,2) = f(2) for any v € I'(p),

ii) f is holomorphic at each cusp of I'(p), and its Fourier expansion
at each cusp has no the constant term.

element vy =

Let Six(I'(p)) be the set of Hilbert cusp forms with weight k for
T(p). Put flx[y] = f(v2)ik(7,2) for v € SLa(ok). Then SLy(ok)
acts on Sx(I'(p)) by (v,f) — fle[y]- Since I'(p) acts on it trivially,
SLy(F,) = SLy(ok)/T(p) acts on it (¢ = Np). Let 7 be the represen-
tation associated to this action. We are interested in the representation
r. Let ¢ be a power of an odd prime. Then, there are two pairs of
irreducible characters of SLy(FF,) whose values are conjugate each other.

We give a list of values at € = ((1) 1) , € = <(1) 717) (7 is a nonsquare
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element of IF; ) of such pairs (a1, as) and (81, B2) as follows:

/

€ - €
1+./3 ' 1-/g
a1 _ 2\/_ 2\/_
1-1/q 1++/q
o 2\/_ 2\/_
' By ~14++v/—q —1—v/—q
1 2 2
3 —1-v/=¢ —1+v=q
2 2 2

Note that each pair has the same values on other conjugacy classes. If
¢ = 1 (mod 4), then $; and (B2-do not appear. If ¢ = 3 (mod 4), then
a1 and @ do not appear. Let y; be the multiplicity of a; (resp. £1) in
tr # when ¢ = 1 (mod 4) (resp. ¢ = 3 (mod 4)), and y, the multiplicity
of ay (resp. B2) in tr 7 when ¢ = 1 (mod 4) (resp. ¢ = 3 (mod 4)). For
the multiplicities y; and y2, Hecke proved the following result.

Theorem 2.2(Hecke [2]). Ifn =1 and k =2, then

{ 0 (¢ =1 mod 4),

Yy1— Y2 = S

1 AQ(v=9)  (g=3mod 4),
Eichler got the following result.

Theorem 2.3(Eichler [1]). Ifn =1 and k = 2, then

1

yl'_ Y2 = \/(~1)1q-1)/2q§ (5) v(i),

1=1

where (E) is the quadratic residue symbol m0d~p, and v(i) = e[i/p]/(1—
eli/p]).

Using the Selberg trace formula, H. Yoshida and H. Saito generalized
Theorem 2.2 to Hilbert cusp forms:

Theorem 2.4(Yoshida and Saito, cf [3]). If k > 4, then we have
_ h(K;)
ly1 — yo| = 2" 1Z—J :
2 H(K)

where K; runs over totally imaginary quadratic extensions of K with
the relative discriminant p. ’
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3. The result of Saito.

In this section we review Hilbert modular varieties, and recall the
result of Saito, which is an analogue of Eichler’s formula (Theorem 2.3).

Let the notation be as above. Since I'(p) acts on $H", we have the
quotient space H™/I'(p). One can compactify it by adding all cusps of

['(p). We denote by $H™/T'(p) the resulting surface. The space $"/I'(p)
has two kinds of singularities, i.e., quotient singularities and cusp sin-
gularities. Let X (p) be the desingularization of $"/I'(p). If we assume
that /T (p) has no quotient singularities and that h(K) = 1, then the
resolution of singularities can be described by a complex ¥ obtained from
the pair (og,U(p)). Here U(p) denotes the group of units of K congru-
ent to 1 modulo p. Let v be any element of SLs(0x). Since I'(p) is a
normal subgroup, 7 induces f,, the automorphism of $"/I'(p) defined
by (21, ,2n) — (YW 21, ,7v™2,). Here v(*) denotes the matrix de-
fined by exchanging the components of « for the images of them by the
i-th embedding of K. The automorphism f., can be extended to that of

9" /T'(p), and moreover that of X(p), which is also denoted by f,.

We now recall the result of Saito [3]. Let K be a real quadratic
field, and p a prime ideal of K such that p is generated by a totally
positive element u, prime to 6 - dg (dg is the discriminant of K), and
q = #(Ok/p) is a power of an odd prime. Let U be the unit group
of K, and U(p) the group of units congruent to 1 modulo p. Let [U :
U(p)] = t. There exists an element w € og such that ox = Z + Zw
and 0 < w’ < 1 < w. Here w’ denotes the conjugate of w. We have the
continued fraction

1
b, — —
w
Then we define positive integers py and g by

: 1
PE _y |

Gk 1
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for a positive integer k (1 < k < r). For any element o € ok, H. Saito
defines

eltr (e cpimgiw' | ol (). —pi—1tgi—1w’
Z pw)  w—w m w—w’

- ) ]) (1-efir(3) =2mtie)
n b;
+Z . s’ —1+ . capy!

F(efu() ) L e[ ()

w—w'

. . . : . . PRp— . ,
where i runs over such indices as 1 < i < rt and neither e [tr (%) : p—w%’ﬁ—]

. . ! . ° .
nor e [tr (%) .2 "‘in’,‘lw ] equal 1, and j runs over such indices as

w—w

1<j<rtande {tr (O‘) : _p"‘1+q"‘1wl]' = 1. Note that each integer

—b; is the selfintersection number of some irreducible curve arising from
the cusp resolution of a/u. Using the holomorphic Lefschetz formula of
Atiyah-Singer, H. Saito proved the following:

Theorem 3.1(Saito [3]). On S2(I'(p)) we have

1 ’ 9 N
?1 — Y2 = V (=1)e=D/2¢ T Up) Z (E) v(a),

a€(0x /p)”

where. (—5—) denotes the quadratic residue symbol mod p.

4. The main result.

Let K be a totally real cubic number field. Let p be a prime ideal
of K such that p is generated by a totally positive element y, prime to
6-dg, and ¢ = #(Ok /p) is a power of an odd prime. Let U be the unit
group of K, and U(p) the group of units congruent to 1 modulo p. Let 3
be the complex which describes the cusp resolution of $3/I'(p) attached
to X(p). Let (") be the set of r-simplices in X.

Definition 4.1. For each a € Ok, fo denotes the automorphism of

X(p) induced by <(1) a{u) Put e[ | = exp(2m ), and d(a,b,c) =
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a b ¢

a’ b ¢ |. Then for each a € Ok, we define
al/ bll C”

[ d(a/p,v,w) [dguva/u}]

I/(a) o d(u,v,w) d(u,v,w)

| e
@ (e [fFEm]) (1o [“relen]) (1- o [Lpmern])
e [d(u /1y w)] . e [d(u,v,a/u)]

e {d(u a/u,w)]

d(u,v,w)

d(u,v,w) d(u,v,w)
"o (1-e|-%qesg]) (1 - o[- seeetnl])

a(v, w) _ a(w, )
X {—1~ 1fe[_%] 1—e[—%]}

e |Lunals)| )
+ Z [[d(d(u,v?a/ﬂ)} ' {1 - l—e [Cd(;:,v,a/pz] } ’

(3) l1-e d(u,v,w) d(u,v,w)

where Z(i) runs over the elements of (=% corresponding to the i — 1
dimensional fixed subvarieties of fo (i = 1,2,3), a(v,w) = Fryy - F<w),
and c(w) = 3 vesm Fluy - F<2) (Fyy denotes the divisor of X(p)
corresponding to (v)). |

Then our result is as follows:

Theorem 4.2. On S3(T'(p)) we have

1 2 «
nons e e, L ()Y@

a€(Ok [p)*™
where (T) denotes the quadratic residue symbol mod .

Remark 4.3. Though we only considered in the case k = 2 in The-
orem 4.2, the theorem holds for any even positive integer k. Indeed,
put D := X(p) — $°/T(p). Let Q3 be the sheaf of germs of holo-
morphlc 3 forms on X(p), and L := Q3(log D) the sheaf of germs
of 3-forms with logarithmic poles along D on X(p). Then we have
Sk(L(p)) = H°(X(p),L*?1 ® O3). Here L is trivial around D, and
our theorem can be described in terms of the cusp resolution. Hence
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the claim follows with the use of the Kodalra vanishing theorem and the
holomorphlc Lefschetz formula

We give an example to Theorem 4.2.

Example 4.4. Let K be the field Q(w) defined by w3 + 2w?
1 = 0. Then K is a totally real Galois cubic field with A(K) = 1 and
dg = 7% If we put pu := 2 — w, then yu is totally positive. We find
that p : = () is a prime ideal of K lying over 13. Then on S3(I'(p))
we have y; — y2 = 0. This result agrees with the fact that there does
not exist a totally imaginary quadratic extension of K with the relative
discriminant p.

5. Sketch for the proof of Theorem 4.2.

The difference y; — yo is expressed as

1
Yr — Y2 = \/(_1)((1_1)/2(]

(tr m(e) — tr m(e')).

Since S3(T'(p)) = HY(X (p), 23), we have

tr w(e) = tr(f|HO(X (p), 0%)).
The same thing holds for €. Put
3
r(e) = }jo<—1>?tr<felﬂi<x<p),QB)).
We define 7(¢’) in the same way. Since
HY(X(p),0%) = HX(X(p),0%) =0, HYX(p),0%) =C,
we have

t(f HO(X (p), 92) — tr( fu [FO(X (p), 9) = r(e) — 7(€).

We apply the holomorphic Lefschetz formula to 7(€) and 7(¢€’).
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