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Farey series and the Riemann hypothesis

Masami Yoshimoto (F7t BT - ﬂd‘l‘lk‘?ﬁ‘?%)

The aim of this paper is to consider the equivalent conditions to the Riemann hypoth-
esis in terms of Farey series. |

Farey series F, of order z is the sequence of all irreducible fractions in (0, 1] with -
denominator not bigger than z, arranged in increasing order of magnitude;

b, _
F:L:F[m]:{pr/:z’ l (by,Cu.)=1,0<buscySSL‘}

and the cardinality of F, is the summatory function of Euler’s function

#F, =®(x) =) ¢(n)= %xQ + O(zlogz) (Mertens).
n<lx

o(n) = >~ 1: Euler’s function.
m<n :
(m,n)=1

This asymptotic formula is due to Mertens.
For example, from F» we form Fj:

11
P={pf - R=f

and soon. ,

e
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’
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And the Riemann hypothesis RH states that the Riemann zeta function does not vanish

[UCR

for real part o of s bigger than % It is well known that the RH is equivalent to each of
the following asymptotic formulas, forms of the prime number theorem: k

RH <— C(s)#Ofora::ﬁRg>%
= M(z):=> pn)=0 (_ﬁ“)

n<z

p(n): Mobius’ function

= P(z) =D Aln)= ) logp

n<z pm<e
=240 (ﬁﬁ) :

A(n): von Mangoldt’s function

¢(z): Chebyshev’s function
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Here the weak Riemann hypothesis RH(«) states that ((s) does not vanish for o > a:

RH(a) <= ((s) # 0 for 0 > a.

In this paper I'd like to state main results of Part V [9] and Part VI [6] of this series
bf papers. In Part V we aim at the implications of the RH(a) on the estimates of error

terms associated to Farey series, with occasional acquisition of equivalent conditions.

Principle.
Suppose f has a bounded derivative and consider the error term E¢(z) defined by

B(x)

Byle) = 3 £(p) ~ #(2) | ' f(u)du.
Suppose the RH implies the estimate:
RH = Ey(z) = O (27),
and that the Meﬂin transform F(s) defined by
F(s) = s{(s) /100 Ef(z)z™*'dz for o>1

satisfies following conditions:
(i) F(s) is regular for o > 1, s # 1,
(ii) F(s) #0for § <o < 1.
Then :
RH <= Ef(z) =0 (.ﬁ“) .

We note that if we define the arithmetic function a(n) by
o[k L
¢ am)= Y F(=) —=n [ fwdu,
k=1 \T 0
then Ff(z) can be written as |

By(a) = o+ o)) = 3001 (2) ato)

n<lz n<z

where * denotes the Dirichlet convolution, and F'(s) becomes the generating function of

a(n): |
(2) R =24
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- Theorem 1 (Part V, Theorem 2). Suppose f is an integrable function on (0,1). Let
a(n) be the arithmetic function defined by (1), let F(s) be the generating function (2) of
a(n), and we suppose that F(s) and-a(n) satisfy following conditions (i)~(v): -

(i) F(s) is absolutely convergent for 0 > 0, with 0, <1,

(ii) F(s) is continued to an analytic functton with finitely many singularities in the half-
plane o > «,

(i) F(s) < |t|*+¢ for some & > 0 and every € > 0 uniformly in the region « < ¢ < 1,
|t| >ty >0,

(iv) (p * a)(n) < nP*e for some ﬁ, 0< 8 (< aa)

(v) there exists a non-negative number 0 satzsfymg

> [ x a)(ml <(o=1)"% aso—1
n=1 ne
Then, on the RH(c), we have the (asymptotic) formula:

F(S) S WTE
/CSC(S) d5+0( +),

> (pxa)(n) =

n<e 27

where ‘ »
w= min {ma,x{ﬁ +1—-&1+(k— 1)§,a+ kE}},

and the contour C encn"cles all singularities of F(s)/((s) in the stripa <o <1.
In particular, in the special cases of k = 0 and 8 = 0 we have w = max{a, ﬂ} and
w = a+ k(1 — «a), respectively.

Corollary 1 (Codeca-Perelli [2], Theorem 1). (i) Let f(u) be absolutely continuous
and let f' € L?[0,1] for some p € (1,2]. Then, on the RH(n), we have

Ef(z)=0 (x'"ax{"’%}%e) _

(This covers the Main result of Codecd-Perelli, Theorem 1. )
(ii) Moreover, if F(s) satisfies the conditions (i) — (iii) of Theorem 1 and0 < x < %——
- Then, on the RH(a),
v (a:) ( atx(1- a)+e) .

Corollary 2. For any rational number ﬂ € (0,1) other than %, the RH vmplies
T | '/ 1,38 \ »
E|-z 1- —<I> 1:) 3taste)
(7) = £ 1- fem =0 e )

by the result of Kolesnik.
Moreover, if we assume the GRH (on some Dirichlet L-functions mod q) and the RH,
we have the estimate: : .

E (g- x‘> =.o («3*).  (Codeca [1])
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We can not only cover the strong result of Codeca-Perelli [2] (Corollary 1), some results
of Codeca [1] and their developments as above, but also we can widen the width of validity
of the parameter by % of some theorems proved earlier.

In particular, on the GRH, the RH is equivalent to each of estimates

E (%,x) =0 (w%fs)
B(pe)=0 (=),

and

Theorem 2 (Part VI). If f(u) is the gap-Fourier series;

— - 1 m
flw)y=>Y" > (2 T 1) cos 2m2™1 (2n + 1)2u,

m=0 n=0

with ky, ky € C, l1, Iy €N, 2Rky > 11 + 1 and 2Rky > 15+ 2, then we have the equivalence:
RH < Ey(z) = O (23%%).
Corollary 3. ki =l1 =l =1, ks =2 =
f(u) is Takagi’s function, and

) 1 _ 9—s—1
F(s) = g}—l__—Qz—_—s-—C(s)C(s +1)#0 foro > 3

Hence
RH < Ey(z) = O (7).

(ki =ky =1l;'=1,, =2 = f : Riemann’s function)

Recall that if E¢(z) = (M * a)(z) with suitable a(n), then

>0 o = a(n)
F(s) = 5((o) || Bylaa= o = . T2,
and vice versa.
Hence, when f(u) has a Fourier expansion
f(u)y =" c(n)cos S mnu
n=1

| satisfying the condition;

(s <]

2 le(n)ld(n) < oo,

n=1



45

e o]
then, with a(n) =n ) ¢(mn), we have the Ramanujan expansion:

m=1

00

F(s) = Z > ic al_s(n g>1

n=1 n=1

(Ef = M *a also holds).
Conversely, if F(s) is the generating Dirichlet series;

Feo=Y 40 55,

n=1

the Fourier coefficient of the corresponding f is given by

1 & pu(k
- L5 18 ),
n :
- This is a Hecke-like correspondence.
- TinT — a(n
f(1)= 3 cmpetm e Fs)= 30 A
dynamical system generating Dirichlet series
generating Fourier series ~ zeta-function with
' Euler product if @ is multiplicative
Example. ‘ ‘
f(7) F(s) Eg(x)
Z c(n)ez’”"r s > e(n)oi_s(n)
n=1 n=1
v (Mxa)@)
n=1 T
cos 2mT I M(z)
log 2| sin 7| ¢'(s) Y(z)
1
Bou(7) (REN) (s+2n—1) 3 M( ) ]

m<z

Here Bi(z) is the k-th Bernoulli polynomial.

Theorem 3 (Part VI). (i) Let fii(u) be a gap Fourier series
=1 ' ,
Jea(u) = E ;,;‘cos 2mnlu  for Rk >1,1€N.

n=1

Then Fy.; can be decomposed with Gy having an Euler product as follows:

Fk,l(s)-:- C(k)((ls +k— l)Gk,l(S),

-1
Guats) =TT (1457 ).

p n=1
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(ii) If 2Rk > 1 + 2, we have
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