oooooooogon
1060 O 1998 O 58-65 58

SEVERAL VALUE DISTRIBUTION THEOREMS
FOR THE LERCH ZETA-FUNCTION

A. Laurinéikas

Let s = o + it be a complex variable. In 1887 M. Lerch [12] considered the function
L(\, «, s) defined for o > 1 by the following Dirichlet series

27rz)\m

L(Aa,s) = Z m Ty

Here A € R, 0 < a <1 are fixed parameters where, as usual, R denotes the set of all real
numbers. When ) is an integer number L(), &, s) reduces to the Hurwitz zeta-function.
Suppose 0 < A < 1. Then M. Lerch proved [12] that L()\, «, s) is analytically continuable to
an entire function. Moreover, he obtained that L(\, a, s) satisfies the following functional
equation
o w8 )
LA, a,1—3s)=(27) 3F(s)<exp {7 — 27 za)\} L(—a, A, s)
. - )
T8 _
+exp{ -5 + 27 ia(l — )\)} L(a,1— )\,s)),
where I'(s) stands for the Euler gamma-function. Two new simple proofs of this functional

equation were given by B. C. Berndt [2]. The first of them uses contour integration, the
second the Euler-Maclaurin summation formula. Once one proof of (1) was found by

M. Mikolas [11].
D. Klusch in [7] obtained the asymptotic formulae for

L\ a,0 +t)| e 0 dt, 6 >0,
i )

/ |L(A\ @, 0 +4t)|” dt
0

in the strip < o < 1. In [8] he found a version of the Atkinson formula for L(}, a, s).
W. Zhang in [19] proved an asymptotic formula for

I\ s) = /(; |L(A, i, 8) — a_“’|2 da.

Asymptotic expansions for I(\, s) were given by M. Katsurada [6].
Denote by B(S) the class of Borel sets of the space S, and let, for T' > 0,

vh(...) = %meas {tel0,T),...},

where meas {A} stands for the Lebesgue measure of the set A, and in place of dots we
write a condition satisfied by ¢. Denote by C the complex plane.
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Theorem 1. Supposeo > % Then there exists a probability measure P on (C, B(C))
such that the measure

Pr(A) = vh(L(\ a,0 +1t) € A), A € B(C),

converges weakly to P as T' — oo.

Proof of the theorem is given in [4]. :
Nowlet D ={se€C: o > %}, and let H(D) denote the space of analytic on D
functions equipped with the topology of uniform convergence on compacta.

Theorem 2. Let a be a transcendental number. Then there exists a probability
measure Q on (H(D),B(H(D))) such that the measure

vh(\a,s+ir) € 4),  AeB(H(D)),

converges weakly to () as T — oo.

Proof of the theorem is given in [9].

It was observed by B. Bagchi [1] that functional limit theorems for Dirichlet series have
serious applications, however, in these applications the explicit form of the limit measure
is necessary. For this reason in [10] the explicit form of the measure @) was found.

Denote by ~ the unit circle on C, i.e. v = {s € C: |s| = 1}, and let

where v, = 7 for all m = 0,1,2.... With the product topology and pointwise multiplica-
tion § is a compact topological Abelian group. Therefore there exists the unique probabil-
ity Haar measure mpg on (€2, B(2)). Thus we obtain the probability space (92,B(), m H)
Let w(m) stand for the projection of w € €} to the coordinate space ym. Then we have that
{w(m),m =0,1,2,...} is a sequence of independent complex random variables uniformly
distributed on ~y. Let

e eZﬂ'iAme m
'L()\,Q,S,UJ) = Z m&—()—s—)

m=0

, w € Q.

Then it is not difficult to show that for almost all w € § the latter series converges
uniformly on compact subsets of D, and therefore L(\, a, s,w) is an H (D)-valued random
element defined on (2, B(Q), m H)- Denote by Py, the distribution of the random element
L(\ a,s,w), ie. o :

Pr(A) =mpu(w € Q: L\ a,s,w) € A), A € B(H(D)).

Theorem 3. Let a be a transcendental number. Then the limit measure Q in
Theorem 3 coincides with Pr,. ‘
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This theorem also gives the explicit form of the limit measure P in Theorem 1. Let the
function h: H(D) — C be given by the formula h(f) = f(o) where f € H(D) and o > 3
is fixed. Clearly, the function h is continuous, therefore we have that Prh=1 converges
weakly to Ph~! as T — oo. Therefore the measure P in Theorem 1 equals to

mu(L(A, a,0,w) € A), A € B(C).

Now suppose « is a rational number. In this case the system {log(m+a), m = 0,1,...}
is not linearly independent over the field of rational numbers @, and we must consider the
system {logp, pis a prime} which is linearly independent over Q). Let

Q1 = H'va
p

where v, = for all primes p. Denote by m; i the probability Haar measure on (24, B()),
and by wi(p) the projection of w; € ©; to the coordinate space v,. Then we have that
{w(p), p is a prime} is a sequence of independent random variables defined on the proba-
bility space (4, B(£), min). We take, for naturals m,

wi(m) = [ «f(),

p*|lm

where p®|lm means that p*|m but p**!'{m. Thus, w;(m) is a completely multiplicative
function.

Let a = %, 1<a<gq,(a,q)=1. Define on (Q,B(Ql),m”{) an H(D)-valued random
element Lq(\, a, s,w1) by the equality

oo 2w iAm
—27ida/q § : ¢ /qwl(m)

. , wy € Q,s€ D.
m

Li(A\ o, s,w1) =wi(q) ¢°e

m=1
m=a(mod gq)

Let P, be the distribution of L (A, a, s, w;).

Theorem 4. The probability measure
Pir(A) = vp(L(A o, s +i7) € A), A € B(H(D)),

converges weakly to Py, as T — oo.

All limit theorems stated above can be generalized in the following manner. Let Ty be
a fixed number, and let w(t) be a positive function of bounded variation on [Ty, c0) such
that its variation Vw on [a, 8] satisfies the inequality Vw < cw(a) for all b > a > Ty with

some constant ¢ > 0. Let .

U:U(T,w):/T w(t) dt,
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and suppose that TQim U(T,w) = co. Then we can consider the weak convergence of the

measure -
1 T
- / w(T) (. dr

instead of that of the measure v4(...). Here I4 denotes the indicator function of the set
A. The mentioned generalizations were done in [3], [5].

Theorem 3 can be applied to derive the universality property for the Lerch zeta-
function. Note that the universality of the Riemann zeta-function ((s) was discovered by
S. M. Voronin in 1975. The contemporary statement of universality theorem for ((s) is
the following.

-Let K be a compact subset of the strip {s € C : < ¢ < 1} with connected
complement. Let f(s) be a nonvanishing continuous function on K which is analytic in
the interior of K. Then for every ¢ > 0

l%ioréfy}(jg}z_l(f(s +i7')~f(s)] < 5) > 0.

Later S. M. Gonek, B. Bagchi, A. Reich and the author proved the universality for
some classes of Dirichlet series. There exists an hypothesis that all Dirichlet series have
the universality property.

Theorem 5. Let o be a transcendental number, K be a compact subset of the strip
{s € C: 1 <o <1} with connected complement, and let f(s) be a continuous function
on K which is analytic in the interior of K. Then for every € > 0

hmmfl/T(sup IL()\ @, s +17T) — f(.s)l < 6) > 0.
sEK

Note that in Theorem 5 f(s) is not necessary nonvanishing function on K.

Unfortunately, in the case of rational a the random variables w; (m) are not inde-
pendent with respect to m; g, and therefore Theorem 4 is not useful for the proof of the
universality of L(A, a, s). For this reason we suppose that ) is also a rational number. Let
A=I1/r <l<r, (l,r) =1. Denote, for brevity, k = rq, Bm = Im/k, and let

Ny = Z 2™ hm Xv(m)a

m=1
m=a(mod q)

where x,(m), v = 0,1,...,¢(k) — 1, are Dirichlet characters modulo k, and (k) is the
Euler function. Then at least two numbers 7, are distinct from zero.

Theorem 6. Suppose that there exist at least two primitive characters modulo k,
such that the corresponding numbers 7, are distinct from zero. Let 0 < R < 1, and let
f(s) be a function continuous in the disc |s| < R and analytic in the interior of this disc.
Then for every ¢ > 0

6) > 0.

Theorems 5 and 6, and an application of the Cauchy integral formula lead to the
following results.

lim inf ”T(lnllg)é Iq‘s‘?’/‘*‘”L(l/r, a/q,s +3/4+17) — f(s)| <
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Theorem 7. Suppose a is a transcendental number. Let the map h : R — CV be
defined by the formula

1
h(t) = (LA a,0 +it), L'\ o, 0 +it), ..., LV "D(X, a,0 +it)), 5 <0<l

Then the image of R is dense in C.

Theorem 8. Let A = [/r and a = a/q be rational numbers. Suppose there exist at
least two primitive characters modulo k = rq such that the corresponding numbers 1, are
distinct from zero. Let the function h: R — CV be defined by the formula

h(t) = (q“"”L()\, a,0 +it), ("L a, 0 +it)) ..,

. : _ 1
(¢ 7 "L\ a,0 + it))(N 1)), 3 <o<1l

Then the image of R is dense in ch.

Theorem 7 and 8 allow to obtain the functional independence of the Lerch zeta-
function. Note that during the International Congress of Mathematicians in 1990 D. Hil-
bert formulated the problem of algebraic-differential independence for Dirichlet series. He
noted that an algebraic-differential independence of {(s) can be proved using the algebraic-
differential independence of the Euler gamma-function and the functional equation for {(s).
D. Hilbert also conjectured that there is no algebraic-differential equation with partial
derivatives which could be satisfied by the function

AR St
m=1

" This conjecture was proved independently by D. D. Mordukhai-Boltovskoi [13] and by
A. Ostrovski [14]. A. G. Postnikov [15] generalized the Hilbert problem for a system of
Dirichlet series considering their differential independence. In [16] he investigated the

function -
x(m
Lazs)= Y X ym
m=1

where x(m) is a Dirichlet character, and proved that the equation

O L(z, s, x)
P(w, 5T 5l fsT ) =0

can not be satisfied for any polynomial P. S. M. Voronin [17], [18] obtained the func-
tional independence of the Riemann zeta-function proving that if F,, m = 0,1,...,n, are
continuous functions and the equality

n

> s Fn(¢(8), (), -, ¢TI (s)) = 0

m=0

is valid identically for s, then F,, =0 for m =0,1,...,n.
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Theorem 9. Suppose a is a transcendental number. Let Fp,, m = 0,1,...,n, be
continuous functions, and let the equality

Z " Fm(L(X, a,8), L'(A\ a,8),... , LN\ a, s)) =

m=0
be valid identically for s. Then F, =0 for m =0,1,...,n

Theorem 10. Let A = [/r and a = a/q be rational numbers. Suppose there exist at
least two primitive characters modulo k = rq such that the corresponding number 7, are
distinct from zero. Let Fy,, m =0,1,...,n, be continuous functions, and let the equality

n

Z SmFm (q—sL()\, a, S), (q_sL()\, a, 8))1, o (q—-sL()\, o, 3)>(N"‘1)) =0

m=0
be valid identically for s. Then F,, =0 for m =0,1,.

Proof of Theorem 9. 1t is sufficient to prove that F,, = 0. Let, on the contrary, F, #0.
Then there exists a bounded region G in CY such that the inequality

|Fa(s0,81,--.,8n-1)] >¢>0 (2)

holds for all points (g, $1,...,5N—1) € G. By Theorem 7 there exists a sequence {tx},
tr — 00, such that

(L a0 +it4), IO a0 +iti), oo, LNV (A 0,0 + itr)) €.

However this and (2) contradict the hypothesis of the theorem. Hence Fy, = 0.

Proof of Theorem 10 is similar to that of Theorem 9, and it uses Theorem 8.
Now we present some results on the zeros of the Lerch zeta~funct10n They were
obtained by my student R. Garunkstis.

Theorem 11. If 0 > 1+ «, then L(\, « s) # 0.

Let L.(I) = {s € C: o(s,) < ¢}, where [ is a line on the complex plane C, and ¢(s, [)
‘stands for the distance of s from [.

Theorem 12. Suppose A # % Then there exist constants o9 <.0 and € > 0 such
that L(A,a, s) # 0 for o < o9 and

t
5¢L€0(02 7r1_)‘+1>.
. y 10gT

Theorem 13. Suppose A # % For any € > 0, L(\, a,s) has infinitely many zeros
lying in ’
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Theorem 14. If [t| > 1 and 0 < —3, then L(%,a,s) # 0.
We say that zero sy of L(A, a,s) is trivial if

mt
SOELeo(U: 1—x +1)
log =5~

for A # %, or sg lies on the real axis if A = % Here ¢; is defined in Theorem 12.
Let [u] denote the integer part of u.

Theorem 15. If o < —(2a+1+2[23 —a]) and [t| < 1, then L(3,,s) # 0, except for
trivia] zeros on the negative real axis, one in each interval (—2m — 2a — 1, —2m — 2a 4 1),
m > 2 —a.

Denote by NT(\, a,T) and N~ (A, @, T) the number of nontrivial zeros of the function
L(\, a, s) in the regions 0 < t < T and —T < t < 0, respectively.

Theorem 16. We have

T
Nt(\, o, T)= —logT — N log(2maA) + O(log T'),
2T 2n
N-(\a,T)=NT(1-Aa,T).

Now we give some results on zeros of the Lerch zeta-function in the half-plane o > 1
as well as in the strip 0 <o < 1.

Theorem 17. Let o is a non-rational number. Then there exists a constant ¢ =
¢(A, @) > 0 such that, for sufficiently large T, the function L()\ a, s) has more than cT
- zeros lying in the region o > 1, |t| < T.

Theorem 18. Let o be a transcendental number. Then for any o4, 02, —%— <o <
o2 < 1, there exists a constant ¢ = ¢(\, a,01,02) > 0 such that, for sufficiently large T,
the function L(\, «, s) has more than c¢T zeros lying in the rectangle 01 < 0 < 09, [t| < T.

Theorem 19. Let A\ = l/r and a = a/q be rational numbers. Suppose there exist at
least two primitive characters modulo k = rq such that the corresponding numbers 1, are
distinct from zero. Then for the function L(A, «, s) the assertion of Theorem 18 is true.
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