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Scattering Theory for Time-dependent
Hartree-Fock Type Equation

Takeshi Wada (#) B i %)
Osaka University

1 Introduction

In this paper we consider the scattering problem for the following system of nonlinear
Schrodinger equations with nonlocal interaction

) 1 3 | |
z—a—guj = _EAuj + fj(u), (t,x) e R x Rn, (1)
uj(va) = ¢j(m)’ j=1,"',N. (2)
Here A denotes the Laplacian in z,
N N - .
Fi(@) = YV o fue)uy = D[V * (uya)lus,
k=1 k=1

and * denotes the convolution in R™. In this paper we treat the case n > 2 and
V(z) = |z|7" with 0 <y < n.
The system (1)-(2) is called the time-dependent Hartree-Fock type equation,
which appears in the quantum mechanics as approximation to the N-body problem.
Throughout the paper we use the following notation:
V = (8/8z1,--,0/0x,),U(t) = exp(itA/2), M(t) = exp(i|z|*/2t),J = U(t)zU(—t) =
M(t)(itV)M(~t). For 1 < p < o0, p' = p/(p—1), 8(p) = n/2—n/p. |- |, de-
notes the norm of LP(R™) (if p = 2, we write || - ||z = || - ||). For 1 < ¢,7r < o©

and for the interval I C R, || - ||,,-,r denotes the norm of L"(I; LY(R")), namely,
1/r :

r/q
lullgrr = /I(/R lu(t, :c)]qd:c> dt] . For positive integers [ and m, '™ de-
notes the Hilbert spase defined as

B = {¢ e R Wl = (T 1970+ T IePl?)” < oo}.

lorf < 1BI<m

When we use N’th direct sums of various function spaces, we denote them by the
same symbols and denote these elements by writing arrow over the letter, like f.
There are many papers for the following equation

.Ou 1 n
ZE' = —-é'A'U, + f(u), (t,m) ER xR y (3)

u(0,z) = ¢(2), | (4)



where

flu) = VPl = [ Je =y u(t,y)Pdy u(t,2)

(see, for example, [5, 7, 8, 9, 12]). The equation (3)-(4) is called the Hartree type
equation. For the scattering problem for (3)-(4), the following results are known

(see [9]).

[A] Suppose that 1 < 4 < min(4,n), and I,m € N. Then, for any ¢(*) € '™,
there ezists a unique ¢ € L™ such that
Tim_[16%) = U(=t)u(t)sim = 0, (5)
where u(t) is the solution of (3)-(4) with U(—t)u(t) € C(R; ™).
For any ¢{=) € '™ the same result as above holds valid with +oo replaced by
—o0 in ().

[B] Suppose that 4/3 < v < min(4,n), and [,m € N. Then, for any ¢ € "™,
there ezist unique ¢(£) € L™ such that the solution u(t) of (3)-(4) with U(—t)u(t) €
C(R;Z!™) satisfies

lim [16%) - U(=t)u(®)lsn = 0. (6)

t—+o0

By Theorem [A], we can define the operator W, in ©'™ as
W+ : ¢(+) — ¢7

which is called the wave operator. The operator W_ is defined similarly. Theorem
[B] implies the completeness of Wy, namely, RangeWy = ™.
To prove Theorem [A], it is sufficient to solve the integral equation

u(t) = U(t)¢™H + / T Ut = 1) fu(r))dr,

t

assosiated with (3) and (5), by the contraction mapping principle; t6 prove Theorem
[B], it is sufficient to show that ||Jul||; . R is finite, where u(t) is the solution of (3)-
(4) .

In this paper, we want to show the analogous results to [A], [B] for the system
(1)-(2). First, we summarize the results which we can treat in the same way as in
case (3)-(4). We convert (1)-(2) into the integral equations

t

uj(t) = U(t)¢1 - / U(t - T)fj(ﬁ(T))dT, .7 =‘17' ) N7 | (7)

0

then

Proposition 1.1 Suppose thatn > 2,0 < v < min(4,n), and l,m € N. Then for
any ¢ € H', there exists a unique solution u(t) € C(R; H') of (7). Furthermore, if
$ € o™ then U(—t)ii(t) € C(R; T4™).



Proposition 1.2 The solution 4(t) satisfies following equalit-z'e‘s

(i)

(uj(t)vuk(t)) = (¢ja¢k)’ 3, k=1,---,N, (8)
especially,
;I = lld5ll, g =1,---,N; (9)
(i1)
E(i(t)) = E(¢), (10)
where
. N
B@) = LIVHI+ P
P@) = ;/:/IwwMW%HHW(N—%@MWMMw@MMMw

(iii)
N t
ZIII:CU O + 2P (a(t)) = anszHZ (2 —7)/0 TP(i(r))dr.  (11)

REMARK. (i) By tye Cauchy-Schwarz inequality, P() > 0. .
(ii) The equalities (9), (10) and (11) are called the L*-norm, the energy, and the
pseudo-conformal conservation laws, respectively. ‘

Proposition 1.3 Suppose that 1 < v < min(4,n), and I,m € N. Then for any
) € Bh™  there exists a unique ¢ € L4™ such that

im0 = U(=)a(0) 51 =0, @

where i(t) is the solution of (1)-(2).
For any ¢(=) € ©'™, the same result as above holds valid with +oco replaced by
—o0 i (12).

The proofs of Propositions 1.1-1.3 are similar to those of the corresponding results
for (3)-(4), so we shall omit them ( see, for example, (8, 9, 12]).

However, we cannot prove the completeness of wave operators by the method of
previous works. So we shall use the method in our work [15] to obtain the following
main theorem in this paper:

Theorem 1.1 Suppose that 4/3 < v < min(4,n), and I,m € N. And if v < V2,
suppose, in addition, that m > 2. Then for any ¢ € T'™, there exist ¢ € Bhm
such that the solution of (1)-(2) satisfies

lim [|¢®*) — U(=)a(t)||zum = 0. (13)

t—Xo0



Since U(t) is unitary in H', (13) suggests that the asymptotic profiles of 4(t) as
t — too are U(t)¢*); and by the estimates :

1U@)H |, < (2x]t)) @) 6B, 2<p < oo,

it is expected that
l@&@)ll, = O(lt1~°®) (14)

as t — Foo. Indeed, we shall prove (14) in later section. Conversely, if (14) holds
for some p sufficiently large, We can prove Theorem 1.1.

2 Preliminary estimates

Lemma 2.1 ( The Gagliardo-Nirenberg inequality ) Let 1 < ¢,r < oo and
§,m be any integers satisfying 0 < j < m. Ifu is any function in W™4(R™*)NL"(R"),
then

> Vel <€ ( > llVﬁUIlq) [ (15)

lo|=5 |B|=m

where ] ) ) )
J m

L 1—a)=

sl eyt

for all a in the interval j/m < a < 1, where the constant C is independent of u,
with the following exception: if m — j — n/q is a nonnegative integer, then (15) is
asserted for j/m < a < 1.

For the proof of Lemma 2.1, see (3, 14].

Lemma 2.2 Let o > 0. Then

I(=2)"fgll < CUI(=2)FIl llglleo + I flleoll(=2)"2g]])- - (16)

This lemma is essentially due to [4, 6]. The lemma is obtained as in the proof of
Lemma 3.4 in [4] and Lemma 3.2 in [6], by using the theory of Besov space (for
Besov space, see [1]).

Lemma 2.3 (The Hardy-Littlewood-Sobolev inequality) Let0 <y <n,1<
pg<ocandl+1/p=v/n+1/q. Then

IHz[™"* ¢ll, < Cli¢ll,- (17)
For the proof, see [10, 13].

A pair (¢,r) of real numbers is called admissible, if it satisfies the condition

0 <é(p) =2/r < 1. Then



Lemma 2.4 If a pair (q,7) is admissible, then for any ¢ € L*(R™), we have

U (@)Y llgrr < CliYl- - (1)

¢
Lemma 2.5 We put (Gu)(t) = / U(t — m)u(r)dr. Let I C R be an interval
to

containing to, and let pairs (g;,v;),j = 1,2, be admissible. Then G maps L™ (I; L%)
into L™(I; L) and satisfies

Gullazrar < Cllullgs .1, (19)
where C is independent of I.

For the proof of Lemmas 2.4 and 2.5, see [11, 16].

3 Decay estimates for some norm of the solution

In this section we shall estimate the LP-norm of the solution #(t) of (1)-(2) to prove
main theorem. We use the following transform

v(t) = FMEU(=u;()
(i) exp(—itlal?/2)u; (¢, te),

where F is the Fourier transform in R™. Then the equations (1) are transformed
into the equations

9 1 o
=~ v+ =fi(@), j=1N, (20)

and if ¢ € £'™, then #(t) € C((0,00); £™!). The relations (9) and (11) are

equivalent to

Lol =0, j=1,-,N (21)
and
LS Do) + TS P((0) = 0 (22)
dt i7" 7 dt ’ v

respectively. The relation (22) implies

Lemma 3.1 Suppose thatn > 2,0 < v < min(4,n), and $ € L1, Then, fort > 1,

Vo, Ce=" ify <2,
I NVOICER AR AV (29

i=1

Here, the constants C depend on E e



Proof. If v < 2,

N

%(t"*;nwj(t)w+P(a<t>>) (4 - Qtv—sznvv] W <0,
and if v > 2,

d (& |

3 (2 [9o;0)1” + tz-vau))) = 2 - )ETP(E() < 0.
Hence

2 ct*=7 if 2,
vavj [ AR (24)

So we shall prove (23) when 2 < v < 2. We multiply (20) by A®;, and integrate
the imaginary part over R®. Then

S HIVuOF = [ f(5)A0ds.

Since Im'/R V % |vg]? |Vv1|2d:z and Im E / Vo (vji)k)Vvk - Vu,;dz are equal to

7,k=1

zero, we have, by Holder’s inequality and Lemma 2.3,
1d &
N
= t"Im [/ 'UJ'V(V * I’Uk|2) . Vﬁjd.r +/ ’UkV(V * (’Uj'l_)k)) . V'Ujd:l)
: jk 1 R~ R~ ‘
< Cesl; Z Vo ()%,

Jj=1

where p = 2n/(n — v). By Lemma 2.1 and (24), we have

loi ), < Cllos =2V,
Ctr=")/A4,

VAN

Therefore,

it Z: IVo;0)I? < Gt W?Z Vo511 (25)

=1
Since v%/2 > 1 if v > \/_, (25) and Gronwall’s 1nequality yield (23).

Lemma 3.1 immediately implies -

Proposition 3.1 Suppose that /2 < v < min(4,n), and <Z € XU, Then the
solution of (1)-(2) has the following estimate

1Z(®)ll, < C(1+ [t~ (26)
where 0 < 6(p) <1 ifn>3 and 0 < 6(p) <1 tf n=2.



Proof. Since ||%(t)||, = t=%®||5()||,, Lemma 2.1 and Lemma 3.1 yield (26).

Lemma 3.2 Suppose that 1 <y < /2 and ¢ € T2, Then we have fort >1,

2 t(’Y —8y+10)/(2~~) if n Z 3
Z “Av ” { Ct(”r —8y+10)/(2—~)+¢ if n = 2? (27)

Heree is a posztwe number which can be chosen arbitraridy small, and the constant

C depends on [|$||21,z, and € (the casen =2 ).

Proof. Letting A operate on (20), we have

8
"Bt

Multiplying (28) by A9;, integrating the imaginary part over R™, we have

1 1 - )
Avj = =gz b+ ZAf(D), j=1,N. (28)

> dtuAv]( )P = —Im S A5 (3)A0,da.

Since Im/R V * v 2| Av;|*dz and Im Z: / V x (v ) Avg Av;dz are equal to zero,

7,k=1

1d ¥
§d_z || Av;(2) Ol
N |
= Im Y [/R AV * [Py Avide +2 [ (V<o) - Vo;Avyda
k=1 "

+ / V * 'UJ'U]C )vadex -+ 2/ V * (Uj’ljk)) . Vva’DijL'} . (29)

(1) Case n > 3. Holder’s inequality, Lemma 2.1 and Lemma 2.3 imply that the first
term in the brackets of the right of (29) is dominated by

C [ 12 (V0 [o]) fos] [Avy|da
< OV ot lans oz 10 i 105

N N
< O NVu )= (0 1 Aw )7,
j=1 j=1

The other terms are estimated similarly. Therefore, it follows from (23) that for
t>1,

Z“A”f Ol C“(ann)w (ZHAUJ ”z)m

7=1

v/2
< s Av, 2] ' (30)
i(



Integrating this differential inequality, we have

N
(; IIA'vj(t)Ilz)

which implies (27). Since ||Av;(1)|| = || |z]PU(=1)u(1)]| < C||||z12, the constant
C in (23) depends on ||¢||z12.
(ii) Case n = 2. Since
n—vy n/2I‘\ n—y :
2 1( 2 )(——A)(""")/Z, 0<y<nmn,
L'(3) |

1—v/2

N 1-v/2
< Ct(lo—&‘l+"/2)/2 (Z ||A'U_7 ”2) . (31)

=1

Vx =

we have for n = 2, —AVx* = C(—A)"/2. Hence, by using Holder’s inequality, Lemma
2.1 and Lemma 2.2, we can estimate the first term in the brackets of the right of
(29) by
| Cl=2)"2[or*] llv;llooll Avs ]
< CN(=AY o] 1513l Avsl

v/2

< Cldlle (;IIVWII) (;lIA%'IIZ) : (32)

Since Lemma 2.1 implies
C| A ||+ ||y |15/ €+

”vk”oo S
< Cl'”k112/(6+2)l|vvkl|(9—2)/(6+2)“Avk||2/(9+2),

where 2 < 6 < oo, the right of (32) is dominated by

) N 4—~vy—2a N
Cllvl® (Z_; IIijII) (Z_: “Avj||2)

with @ = 2/(60+2). The second term in the brackets of the right of (29) is estimated
by

(v+a)/2

IV * (IVr| vk ) llns(r-1) 1V l2n (et | D |

N 3-7 /N v/2
< Ot (Z IIijII) (Z HAvjllz)
7=1

7=1

N 4-v—2a ;s (v+a)/2
< Cllg)° (Z HVUJ'”) (Z 9|Avj||2)
j=1 J=1

The other terms are estimated similarly. Therefore, we have

(v+a)
ZIIAUJ )|I? < cele=srt) (ZIIAUJ |I2) (33)

Since the number a can be choosen arbitrarily small, this diferential equation implies
(27).



Lemma 3.3 Suppose thatn > 2,1 < v < V2 and ¢ € 2. Then we have for
t > 1,
(@), < C. (34)

Hfre, p satisfies 0 < 8(p) < (v —1)(2—7)/(6 —4v), and the constant C depends on
l[#llgs2-
Proof. For simplicity, we prove the lemma in case n > 3. We put ||7]|,x =

/ (ON, [ui?)P/2dz]'/P, which is equivalent to the norm ||7]|, = L&, [loll,. We

multiply the equation (20) by (I, |v|?)?~?/2p;, integrate their imaginary part
over R™, and add them. Then we have

d (r-2)/2
L2 sl = - ztzlmz fo () s,

(p—2)/2

. N N (p—2)/2
since Im/R V*lvk|2( > |v1|2) |v;|dz and Im Z L Vi (v;0k ) vk 0; ( > |v1|2> dzx
n =1 n ' =1

. 7,k=1
are equal to zero. By the integration by parts and Holder’s inequality,

1d, - N (r-2)/2_
Lison, = g [, v () ) e

=1

(»—2)/2
< Ct? Z ]Rn IijP (E lvz|2> dz
1=1 =1

N
< Ot IVl I,
s

We note that when 1 < v < v/2, we have 0 < (v — 1)(2 — 7)/(6 —4v) <1, and so
2 < p<2n/(n—2). Then, Lemma 2.1, Lemma 3.1 and Lemma 3.2 yield

IVoill, S ClIVw; =50 Ay |70
< Ct.

Here

6 —4
n=2-7+ L 5(p),
—

and the constant C depends on ||$||Ex,z. Therefore,
d 24y~ -
ZIPOIE. < Ct |5 1. (36)

P =

Since n < 1 for p satisfying 0 < 8(p) < (y —1)(2 —7)/(6 — 47), the estimate (34)
follows by integrating the differential inequality (36).

By this lemma, we have

Proposition 3.2 Suppose thatn 22,1 <7y < V2 and gZ € Y12, Then the solution
of (1)-(2) has the following estimate

@)l < CA+ 1) ~°%, (37)
where p satisfies 0 < 6(p) < (v —1)(2—7)/(6 — 47).
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4 Proof of the main theorem

In this section, we shall prove Theorem 1.1. Throughout this section, we put ¢ =
4n/(2n —«) and r = 8/, then the pair (¢,r) is admissible. To prove theorem, we
introduce the following Banach space :

xtm(1) = {u € C(I; HY); ||ul xumzy < 00},
where

lullximny = 3= (Vo ullzor + IV ullgrr) + 32 (1T7ullzc0r + 177 ullg.r0)-

| <t I8l<m

Let I = [T, ), where T will be defined later. Using Holder’s inequality, Lemma
2.1 and Lemma 2.3, we have

> Ve fi(@lly < Cllullzz 2 IVl (38)

ee|=t =1 |a|=!

and

> P i@y <CIIUII2Z > TP ull,- (39)

|1B|=m k=1|8|=m

So we have, by Lemma 2.1 and Lemma 2.5,

2 IV Ujllze0r < 30 IVCU(=T)ui(T) + C 3 IV £Fi(@)llgrs- (40)

ol <t ol <t |l <t

Under the assumption of the theorem, Proposition 3.1 or Proposition 3.2 implies
|@(t)]ly < Ct~7/4. Therefore, by using (38) and Hélder’s inequality, the second term
in the right of (40) is dominated by

oy ¥ [ (lnvu) o]

k=1 |a|<i

< CZ ) [/ (2 v=ur(7)]l )“dr]w

k=1 |a|<I

< o[y
- T

If ¥ > 4/3, the integral in the right of (41) converges. Hence,

5 19t e < WDl + CT iy (42)
Je|<I :

We can estimate

SNV llarts 2o 17Pusll200,1,20d 35 17%u5llgm,0

o<t 18| <m 18]<m
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similarly. Therefore, |
[@lxsmcn < CHU(=TVAT) gt + CTE D] g, (43)
If we choose T sufficiently large so that CT(*4=30/4 <1/2, (43) implies
@l xsm(s) < CIU=T)ET) 51

Therefore, ||4|| xt.m®) is finite. Once this has been proved, by the similar argument,
for t > s > 0, we have

[U(=t)a(t) — U(=s)u(s)|lzem

IA

t NN |
([ 7 ar ) iy
S
< C (t(4—37)/4 —_ 3(4—37)/4) ) (44)

The right of (44) tends to zero as s,t tend to infinity. Thus the theorem has been
proved.

Corollary 4.1 Suppose that 4/3 < v < min(4,n), and I,m > 1 + [n/2]. Then for
any ¢ € '™, the solution @(t) of (1)-(2) satisfies

l2@(t)lleo < C(1 4+ [¢])™/2. (45)
By Proposition 1.3, we can define the operator W, in 4™ as-
W+ : $(+) — $1

and we can define W_ similarly. The operators W, are called the wave operators.
Theorem 1.1 shows that W, are complete, namely,

RangeW, = &b™.
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