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ABSTRACT. Let us consider the three dimensional Navier-Stokes initial value problem
in the exterior to a rotating obstacle. It is proved that a unique solution exists locally
in time when the initial data a possess some regularity in the space L? (similarly
to the assumption given by Fujita and Kato [4]) and satisfy (w X ) - Va € H™1,
where w stands for the angular velocity of the rotating obstacle. An essential step
for the proof is to deduce a certain smoothing property together with estimates near
t = 0 of the semigroup (it is not an analytic one) generated by the operator Lu =
—P[Au+ (w X ) - Vu — w X u], where P denotes the projection associated with the
Helmholtz decomposition.

It is one of important problems in fluid mechanics to study the Navier-Stokes flow
past a rotating obstacle. In order to understand the rotation effect mathematically,
we will limit ourselves to a problem under the following simple situation; the angular
velocity is constant and the translation is absent. In this article we discuss the locally
in time existence of a unique solution to such a problem.

Let © C R3 be a compact, isolated rigid obstacle which is bounded by a smooth
surface I', and Q = R3\ O the exterior domain occupied by a viscous incompressible
fluid. Assume that the obstacle O is rotating about the z3-axis with angular velocity
w = (0,0,1)T. Here and hereafter, super-T' denotes the transpose and all vectors are

column ones; z = (z1,z2,z3)T, Vs = (8/0z1,0/022,0/8x3)T and so on. Set

Q) ={y=0@)z; z€Q}, T ={y=0()z; zel},
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which actually vary as time ¢ goes on (this is the situation under consideration) unless

O is axisymmetric, where

cost —sint O
O(t) = | sint cost O
0 0 1

We now consider the fluid motion around O, which is governed by the initial boundary

value problem for the Navier-Stokes equation

( Oyw +w - Vyw = Ayw — Vyq, y € Q), t >0,
- Vy -w=0, yeQt), t >0,
(NS.1) g w=w XY, yeT(t), t>0,
w— 0, ly| = o0, t >0,
| w(y,0) = a(y), y € Q,

where w = (w1 (y,t),wa2(y,t), ws(y,t)) and ¢ = q(y,t) denote, respectively, unknown
velocity and pressure of the fluid. The boundary condition on ['(t) is the non-slip
one since dy/dt = O(t)0(t)Ty = w x y, where O(t) = (d/dt)O(t). It is natural to
reduce (NS.1) to the problem in the fixed domain {2 by using the coordinate system
z = O(t)Ty attached to the rotating obstacle. There are two ways to make the change
of the fluid velocity. The one is

u(z,t) = 0() w(w 1)

and the other is

v(z,t) = O)T [w(y,t) —w x y] = u(z,t) —w x z.

We also make the change of the pressure by

plz,t) = q(y, ?).
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Then we have

emu=ouﬂ@u+(0ufoun)wau+0@F0@m]
= 0(t) [Ou — (w X 2) - Vau +w X u)
= O(t) [B — (W X 2) - Vyv +w X 9],

Ayw = O(t) At = O(t)Agv,

Vyq = O(t)Vap,

V, w=Vs u=V,-v,

and

w-Vyw = O0(t) [u- Vyul
=0@) v - Vev+(wxz) Vev+wxv+wx (wxz).

The problem (NS.1) is thus reduced to the following (NS.2) and (NS.3) for {v,p}

and {u, p}, respectively. The former is the problem with not only the Coriolis force

2 w X v but also the growing boundary condition at space infinity:

(0 +v -V =080 —2w X v —w X (WX z)— Vp, z€EN, t>0,
Vg v =0, z€eQ, t>0,
(NS.2) ¢ v =0, zeT, t>0,

v4+w Xz —0, |z] — o0, t >0,

v(z,0) =a(z) —w X z, xz €.

\

The latter is the problem with the convection term having the coefficient w x = which

is understood as the rigid motion rotating about the z3-axis:
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(NS.3)
(Ou+u-Vgu=Azu+ wXxz) Veu—wXxu— Vg, zeN, t>0,
V.- u=0, | zeQ, t>0,
$ u=w X, zel,t>0,
u — 0, |z| — o0, t >0,
L u(z,0) = a(z), T €.

Up to now the mathematical theory for the existence and uniqueness of solu-
" tions to the problem (NS.1) has been little developed. In his Habilitationsschrift 2]
Borchers first attacked this problem, including the case where the angular velocity
depends on time t. 'He dealt with the problem (NS.2) and proved the existence of

weak solutions of class

v+wxz(=u)€L®(0,T; L*Q)nL*(0,T; H'(Y), VT>0,

with the energy inequality provided that a € L?(Q) satisfies

(1) V-a=0 in £, v-(fa—wxz)=0 on I,

where v is the unit exterior normal vector to I. We donot know the uniqueness
of weak solutions and this feature is the same as the standard Navier-Stokes the-
ory. Later on, in [3] Chen and Miyakawa have treated (NS.3) for Q = R3, that
is, the Cauchy problem. They have discussed the existence of weak solutions with
the so-called strong energy inequality and some decay properties of the constructed

solutions.

The purpose of the present article is to prove that there exists a unique local
solution to the problem (NS.3) whenever the initial data a € L%(QY) satisfying (1)
possess some regularity and fulfill (w x z)- Va € H™1(Q).
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To state our results precisely, we introduce notation. We use the same symbols
* for denoting the spaces of scalar and vector functions if there is no confusion. By
C () we denote the class of all C* functions with compact supports in (2. Let
H#(Q) for s > 0 be the usual L? Sobolev spaces. If s is not an integer, then the space
H*(9) is defined via the complex interpolation (see Lions and Magenes [11, Chapter
1]), that is,

H?(Q) = [LQ(Q),Hm(Q)]G, s =6m, m >0 (integer), 0< 6 <1

The scalar product and the norm of L2(Q) = H?(Q) are respectively denoted by
(-,-) and || - ||. The space H§(Q),s > 0, is the completion of C§°(2) in H*(),
and H~%(Q) stands for the dual space of H§(Q2). Let C§%($2) be the class of all
solenoidal (that is, divergence free) vector functions whose components are in C5°(£2).
By L2(Q) we denote the completion of C$,(Q) in L?(€). Then the space L*(Q)
of vector functions admits the following orthogonal decomposition, the Helmholtz

decomposition (Temam [13, Chapter I]):

L*(Q) = L3(9) @ L7 (),

where

L72T(Q) = {VP € Lz(g)7 pE leoc (—Q—)} .

Let P be the projection (the Fujita-Kato projection) from L?(£2) onto L3 (€2) associ-
ated with the decomposition above. Then the Stokes operator A : LZ(Q) — L2(Q)
is defined by

D(A) = HX Q)N H}Q)NL2(Q), Au= _PAu.

In view of (NS.3), the linear operator £ : LZ(Q2) — L2(Q2) we should consider is as

follows:
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D(L) = {u € D(A); (wxz)-Vue L*Q)},
Lu=Au—P(wxz) - Vu—w xu].

It is proved that the operator £ is m-accretive, so that —L generates a (Cp)

semigroup {e~*4;t > 0} of contractions on L2(Q). Furthermore, we have
gr p 7 ag

() lell 2 + 1P [(w x 2) - Vall| < C (1 + L)uf,

for all u € D(L) (see [8]). On account of unboundedness of the coefficient of £, the
elliptic regularity estimate (2) is no longer trivial. It is thus not so easy to show
the closedness of £ directly. But the accretivity implies that £ is closable. So, we
prove that 1 4 £ is surjective, where £ is the closure of £. For the proof, we solve
the corresponding stationﬁry problem by using the solutions in R® and in a bounded
domain near the boundary I" together with cut-off functions. For the recovery of the
solenoidal condition in the localization, we make use of the result of Bogovskii [1] on
a continuous right-inverse of the divergence operator with zero boundary condition
in bounded domains. At the next step, we show £ = L together with estimate (2).
The fractional powers of £ are also well defined as closed operators in L2 (2), and we

see that D(L*) C D(A*) with estimate

(3) [ A%ul| < Ca (1 + L)%ull,

for all w € D (£L*) and 0 < o < 1. Indeed, (3) for the case a = 1 is equivalent to
(2), and the Heinz-Kato inequality for m-accretive operators (Tanabe [12, Chapter
2]) implies (3) for 0 < a < 1.

Our method to solve (NS.3) is to make use of the semigroup e *¢ together
with the fractional powers of A and £. Although this approach itself is, in principle,
standard (see Fujita and Kato [4], Giga and Miyakawa [6]), the semigroup ¢ is not
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a usual one. The essential difficulty is the growth at space infinity of the coefficient
w X z of the operator £, so that the convection term (w X z)-V is not a perturbation
of the Stokes operator A. In fact, the associated semigroup for the Cauchy problem
in R3 is explicitly given by

(4) [U@)f](z) =0@)T [¢4f] (O@)r), =€R3t>0,

where

[e4f] @) = @n)™ | e )y

and it is proved that the semigroup U (t) is never analytic on L2 (R?) (sée [9]). This
is a different feature caused by the convection term (w X z) - V. Thus, we cannot
expect that e *# is analytic. However, it has the remarkable smoothing effect. The
following theorem asserts that e~ f is in D(A) for all ¢ > 0 whenever f is slightly
smooth, and that e **f is in D(L) for all ¢ > 0 under the additional assumption
(wxz) - VfeH Q) =, H ().

Theorem 1. (i) Suppose that f € D(A?) forsome0 < 6§ < 1/2. Thene™**f € D(A)
for all t > 0. Furthermore, there is a constant C = C(6) > 0 such that

(5) ' | A~ f|| < C ™| flipasy,

forall 0 <t < 1.
(ii) Suppose that f € D(A%) for some 0 < § < 1, and that (wx z)-V f € H™%(Q)
for some s > 0. Then e~ **f € D(L) for all t > 0 and
Le™f e C(0,00; L2(Q)), e *feC(0,00; L2()),

with
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d
Zef 4 LeTEf =0, 120,

in L2(Q). Furthermore, there are constants C = C(6) > 0 and C' = C'(s) > 0 such
that

[Ce™ 4 f|| < C (t AL fllp(as)

6
(6) +C (t/\1)—3/2{||(wxa:)-VfHH—s(Q)‘*T“f“}’

for all t > 0, where t A1 = min{¢, 1}.
(iii) Let 0 < 6 < 1/2. Then

lim ¢17¢ “Ae_tﬁf“ =0,

t—0

for all f € D(A%). For the same 6 as above, let 0 < s < 2(1 — 6). Then

tl_l% t1—5 ”Ee——tﬁf“ — O,

for all f € D(A%) satisfying (w x z) - Vf € H™*().

In Theorem 1 the case § = 0 (namely, f € L2(f2)) is excluded on account of
a technical difficulty caused by the solenoidal constraint. Indeed, in [7, Theorem 4]
sharper results including § = 0 have been established for the realization of a model
operator A + (w X z) - V with the homogeneous Dirichlet boundary condition in
Lz(Q). But estimates (5) and (6) near ¢ = 0 together with the fractional powers of A
and £ are very useful for the proof of local existence of a unique solution to (NS.3).
The strategy for the proof of Theorem 1 is as follows. We first derive the similar
smoothing effect to Theorem 1 for the semigroup U(t) given by (4). We next employ
the method based on a refinement of the cut-off procedure developed in the proof of
Theorem 4 of [7] combined with the result of Bogovskii [1] mentioned above. For the

details, see [9].
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We now fix ¢ € C*®(R3) such that 0 < ¢ <1,{ =1 near I" and ¢ = 0 for large
|z|, and put

(1) b(z) = —% v x {¢(@)|e2w) .

Then V-b=0in Q,b=w x z on I and b = 0 for large |z|. We set

ﬂ(xv t) = U(.’L‘, t) - b(:l?),

in (NS.3) and apply the projection P to the equation of motion to obtain the integral

equation

t
(NS4)  (t) = e *la—b] — / e~(=9Lp . Vi + B (s)ds,  ¢>0,
0

in L2(Q), where

Bu=u-Vb+b-Vu-+ Fb,
Fb]=Ab+ (wxz) - Vb—wxb—>b- Vb

The main theorem then reads as follows.

Theorem 2. Suppose that a —b € D(L") for some 1/4 < v < 1/2 and that
(wx z)-Va € H*(Q) for some 1 < s < 2(1 —~). Then there exist T > 0 and a
unique solution % to (NS.4) on the interval [0,T), which is of class

ueC([0,1]; L3(),

and possesses the regularity u(t) € D(A),0 <t < T, with the properties:

(8) lim [[a(?) — (a - b)l| peavy = lim [|u(t) - allp(av) =0,
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©) lim 77 @) peaey =0, 7 <@ <1,
(10) @)l paey £ CaKot™**,  0<t<T,y<a<l,
where

Ko = |la = bllpem + 1w x @) - Val g-s(qy + lllz]bll + | FB]| 2 (-

The proof is giveﬁ in [9]. We conclude this article with some comments on
Theorem 2.

Remark. (i) In view of (7), the assumption a — b € D (L") C D (A") (see (3)) with
4 > 1/4 implies that a =w x z on T (cf. Fujiwara [5]).

(ii) The critical case v = 1/4 is the well known exponenf of Fujita and Kato [4].
If Theorem 1 for § = 0 were deduced, then we could show Theorem 2 for the case
vy=1/4.

(iii) Under the assumption (w x z) - Va € H —2(1-7)(Q), it is also possible to
construct a unique solution. But the behavior (9) of such a solution is not clea;r.

(iv) The solution obtained in Theorem 2 is the so-called mild solution. Since we
find the solution u(t) with values in D(A) and it does not belong to D(L) in general,
it seems to be difficult to derive the differentiability of u with respect to time ?.

(v) Theorem 2 holds true with w = (0,0, 1)T replaced by w = (0,0, wp)T for every
wo € R. The existence interval T' = T (Jwo|) > 0 is then monotonically decreasing
with respect to |wp|.

(vi) When the obstacle O is not rotating, that is w = 0, the problem (NS.3)
possesses a unique local strong solution for a € L3(Q) D D(AY4), where L3(Q)
denotes the completion of C§% () in L*(Q). If [|af|Ls(q) is sufficiently small, then
the solution is extended globally in time. This is the result of Iwashita [10].
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