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1 Introduction

In recent yéars, parallel computers have changed techniques to solve problems in various
kinds of fields. In parallel computers of distributed memory type, data can be shared
by communication procedures called message-passing, whose speed is slower than that of
computations in a processor. From a practical point of view, it is important to reduce the
amount of message-passings. Domain-decomposition is an efficient technique to parallelize
partial differential equation solvers on such parallel computers.

In one type of the domain decomposition method, a Lagrange multiplier for the weak
continuity between subdomains is used. This type has the potential to decrease message-
passings since (i) independency of computations in each subdomain is high and (ii) two
subdomains which share only one nodal point do not need to execute message-passings
each other. For the Navier-Stokes equations, domain decomposition methods using a
Lagrange multipliers have been proposed. Achdou et al.[l, 2] has applied the mortar
element method to the Navier-Stokes equations of stream function-vorticity formulation.
Glowinski et al.[3] has shown the fictitious domain method in which they use the constant
element for the Lagrange multiplier. Suzuki[4] has shown a method using the iso-P2 P1
element. But the choice of the base function for'the Lagrange multiplier has not been

well compared in one domain decomposition algorithm.
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In this paper we propose a domain-decomposition /finite-element method for the Navier-
Stokes equations of the velocity-pressure formulation. In the method, subdomain-wise
finite element spaces by the iso-P2 P1/P1 elements[5] are used for the velocity and the
pressure, respectively. For the upwinding, the upwind finite element approximation based
on the choice of up- and downwind points[6] is used. For the discretization of the La-
grange multiplier, three cases are compared numerically. As a result, iso-P2 P1/P1/P1

clement is the best choice.

2 Domain decomposition/finite-element method for
the Navier-Stokes equations

Let Q be a bounded domain in R2. Let I'p(# @) and T'y be two parts of the boundary

0. We consider the incompressible Navier-Stokes equations,

Ou/ot + (u-grad)u + gradp = (1/Re)Au+ f in Q, (1)
divu = 0 in Q, (2)

u = gp onlp, (3)

on = gy on 'y, (4)

where u is the velocity, p is the pressure, Re is the Reynolds number, f is the external
force, gp and gy are given boundary data, o is the stress tensor and n is the unit outward
normal to I'y.

We decompose a domain into K non-overlapping subdomains,
Q=Q,U---UQr, UnQ=0 (k#I). (5)

We denote by ny the unit outward normal on 9. If QN (k # 1) includes an edge of
an element, we say an interface of the subdomains appears. We denote all interfaces by
Ln,m=1,...,M. We assume they are straight segments. Let us define integers x_(m)

and k4 (m) by

I = Qn—(m) N QK—{-(m) (I{_('?TL) < K+(m)) (6)
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Figure 1: Iso-P2 P1/P1 clements

Let Tz be a triangular subdivision of Q. We further divide cach triangle into four
congruent triangles, and generate a finer triangular subdivision Ty ;2. We assume that
the positions of the nodal points in Qyt(m) and those in Qc_(m) coincides on I',,,. We use
iso-P2 P1/P1 finite elements[5] for the velocity and the pressure subdomainwise by

Ven = {ve€ (C(W)% v € (P'(e))% e € Trpjz,v =0o0n 9N I'p}, (7)

Qk‘,h = {q € C(m)a (I|€ € P1(6>36 € 77c,h}7 (8)
respectively, we construct the finite element spaces by
K K
Vi = [I Vi Qn = ] Q- (9)
k=1 k=1

Concerning weak continuity of the velocity between subdomains, we employ the La-
grange multiplier on the interfaces. For the discretization of the spaces of the Lagrange
multiplier defined on I';,, (1 <m < M), we compare three cases (see Figure 2):

Case 1. The conventional iso-P2 P1 element, that is defined by
Wm,h. = (Xﬁ,+(m),hll"m)27 (10)

where

Xin = {v € C(W); v € P'(€);¢ € Thnjo}- (11)

Case 2. A modified iso-P2 P1 element having no freedoms at both edges of interfaces[7].

Case 3. The conventional P1 element, that is defined by

Wm,h = (YK+(TTL),hIFm)2', (12)
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Figure 2: Shapes of (a)iso-P2, (b)modified iso-P2 and (c)P1 base functions for the La-

grange multiplier and a subdivision 7y 4 /2

where

YVin={v€C); v.€ Pl(e),e€ Tan}

The finite element space W), is defined by
M
VVIL - H Wm,h-
m=1

We consider the time-discretized finite element equations derived from (1)-(4),
Problem 1. Find (uz“ i AL) € Vi X @ x W), such that

1L2+1 —uj

V’Uh € I/}“ ( 7“h.)h + b(“h;PZ,) +j(’U[“ AZ) = <fA7 Uh)

_a?(u;; UZ, vh)
—GO(UZ: Uh)?

V(Ih EQha b(u;’[’_l?qh) = 07

Vin € Wh,  jlupt' m) = 0,

(14)

(15)
(16)

(17)
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where

K
(u,v) = Z/ uy - vpdr, (18)
k=1t

K
a(w,u,v) = Z/ (wy, - graduy)vede, (19)
k=1 Qp
9 K
) = — D D(v;)dz, 20
ag(u,v) Re;/ﬂk (ur) ® D(vy)dx, (20)
K
b(v,q) = —Z/ qrdivogde, (21)
k=1 Qe .
= .
jlv,p) = =3 /F (Ve (m) = Vr_ (m) ) 1im s, (22)
m=1 m
. K
j = . d / : d‘) 3 23
(fv) kZ::l( nkf vpde + | ON U ) (23)

(,)n denotes the mass-lumping corresponding to (, ), a? is the upwind finite element ap-
proximation based on the choice of up- and downwind points[6] to ay, and D is the strain
rate tensor.

We rewrite Problem 1 by a matrix form as,

M BT JT yntl Fm
B O O P" = 0 , (24)
J O O I 0

where M is the lumped-mass matrix, B is the divergence matrix, J is the jump matrix,
F™ is a known vector, and Ut! P" and A" are unknown vectors. Eliminating U n+l
from (24), we get a domain-decomposition version of the consistent discretized pressure
equation[8]. Further eliminating P", we obtain a system of linear equations with respect
to A®. Applying CG method to this equation, a domain decomposition algorithm is
obtained[9)].

Remark 1. The quantity A, » corresponds t0 0 - e, (m)]|ym -

Remark 2. In implementation, an idea of two data types[10] is applied to the Lagrange
multipliers and the jump matrix. The idea simplifies the implementation and reduce the
amount of message-passings. For the velocity and the pressure, we do not need to execute

message-passings.
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Figure 3: (a)Two upwind points(W,U) and two downwind points(D,B) in the upwind
finite element approximation based on the choice of up- and downwind points and (b)a
domain-decomposition situation
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Remark 3. In order to evaluate a/(ul, u},v), we need to find two upwind points and
two downwind points for each nodal points. In the domain-decomposition situation, some
of these up- and downwind points for nodal points near interfaces may be included in the
neighbor subdomains. In order to treat it, each processor corresponding to a subdomain
has geometry information of all elements which share at least a point with neighbor
subdomains (see Figure 3(right)). The processors exchange cach other the values of uj,
before the evaluation. Hence the evaluation itself is parallelized without any message-

passings.

3 Numerical experiments
3.1 Test problem

Let Q@ = (0,1) x (0,1) and I'p = 90 (I'y = ¥). The exact stational solution is

’LL(.’L’, y) = (‘1’.23/ + y3> _3:3 - xy2)T7 (25)

plz,y) = 22 +y° —1/2, (26)

and the Reynolds number is set to 400. The boundary condition and the external force
are calculated from the stational Navier-Stokes equations.

We have divided Q into a union of uniform N x N x 2 triangular elements, where N = 4,
8, 16 or 32. We have computed in two domain-decomposed ways, where the number of
subdomains in each direction is 2 or 4. Figure 4 shows the domain-decomposition and
the triangulation in the case N = 32 and 4 X 4 subdomains. Starting from an initial
condition for the velocity, thg numerical solution is expected to converge to the stational
solution in time-marching. If maxy; [uf; — up;'|/7 < 107° is satisfied, we judge that the
numerical solution has converged and stop the computation. Computation parameters
are set as 7 = 0.24/N and a = 1.0 (the latter is the stabilizing parameter of the upwind
approximation).

Figure 5 shows errors between the obtained numerical solutions and the exact solu-
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Figure 4: Domain-decomposition(4 x 4) and the triangulation(N = 32)

tions. They are measured by

K 1/2 1/2

K
ol = 42 [Wltm@uy ¢+ lldllew = {2 NlallZz@ ¢ 1M Iw, = maxmax|A].
k=1 k=1 m

v

Results of the non-domain-decomposition case are also plotted in the figure. We can
observe that the errors of the velocity and the pressure realize the optimal convergence
rate of the iso-P2 P1/P1 clements ,that is O(h), regardless of choice of Wi, . In the first
case (iso-P2 P1 element for W,, 1), the maximum error of the Lagrange multiplier does
not converge to 0 when h tends to 0. It may indicate the appearance of some spurious
Lagrange multiplier modes, since the degree of freedom of the Lagrange multiplier is larger
than that of jump of the velocity in the choice. In the latter two cases the convergence of
the Lagrange multiplier has also observed. The third case (P1 element for W, ) shows
the best property with respect to the convergence of the Lagrange multiplier.

Since the conventional P1 element has the smallest degree of freedom of the Lagrange
multiplier, it can decrease the amount of computation steps in a iteration time in the

conjugate gradient solver. Hence we adopt P1 element for W, ;, in the following.
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Figure 5: Errors of (a)velocity, (b)pressure and (c¢)Lagrange multiplier in the test problem
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Table 1: Domain-decomposition vs. computation times

Domain-decomposition Computation times(sec.)

4x4 4154
4%2 510.9
2% 2 720.1
2x1 1231.
1x1 1090.

3.2 Lid-driven cavity flow problem

We next computed the two-dimensional lid-driven cavity flow problem. The Reynolds
number is 400. The domain @ = (0,1) x (0,1) is divided into a uniform 24 x 24 x 2
triangular subdivision. We chose 7 = 0.01 and « = 1. We computed in the cases of 4 x 4,
4%x2,2x2, 2x1and1x 1 domain-decompositions. The computation time are listed in
Table 1. We see that the computation time becomes shorter as the number of subdomains
(i.e. processors) increases, except for the case of 2 x 1 subdomains. The velocity vectors
and the pressure contours of the computed stationary flow in 4 x 4 subdomains are shown
in Figure 6. We can observe that the flow is captured well in the domain decomposition

algorithm.

4 Conclusion

We have considered a domain decomposition algorithm of the finite element scheme for the
Navier-Stokes equations. In the scheme, subdomain-wise finite element spaces by iso-P2
P1/P1 elements are constructed and weak continuity of the velocity between subdomains
are treated by a Lagrange multiplier method. This domain decomposition algorithm ha,s
advantages such as: (i) each subdomain-wise problem is a consistent discretized pressure
Poisson equation so that it is regular, (ii) the size of a system of linear equations to be
solved by the conjugate gradient method is smaller than that of the original consistent

discretized pressure Poisson equation. For the discretization of the Lagrange multiplier,
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Figure 6: Velocity vectors and pressure contour lines of the lid-driven cavity flow problem,
Re = 400, on a uniform 24 x 24 x 2 triangular subdivision and a 4 x4 domain-decomposition
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we compared three cases: the conventional iso-P2 P1 element, a modified iso-P2 P1
element having no freedoms at both edges of interfaces, and the conventional P1 element.
In every case, we checked numerically in a sample problem that the scheme could produce
solutions which converged to the exact solution at the optimal rates for the velocity
and the pressure. In the latter two cases we have also observed the convergence of the
Lagrange multiplier. Employing the conventional P1 element, we have computed the lid-
driven cavity flow problem. The computation time becomes shorter when the number of
processor increases. We therefore recommend iso-P2 P1(u)/P1(p)/P1(A) element in this

method.
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