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C! APPROXIMATIONS OF INERTIAL MANIFOLDS
VIA FINITE DIFFERENCES AND APPLICATIONS

KAzuo KoBAvas! ( RREE /J\i‘**[li'%‘ )

1. INTRODUCTION

We shall present a method for the construction of approximate inertial manifolds by
means of finite differences. The theory of inertial manifolds (IM for short) is a useful
tool for reducing the long-time behavior of PDEs to that of finite-dimensional dynamical
systems. (See [1-7] and [13]). To compute the reduced finite dynamical system, one
would need to know the explicit form of the IM. Howevwer, even when existence of an
IM can be established, the theory does not provide us with an explicit form of IMs. In
this paper, from the point of finite differences we construct such an approximate IM
that reflects the true dynamics of the original PDE.

Each of the PDEs can be viewed as an evolution equation in a Hilbert space. To be
more specific, let X and Y be Hilbert spaces with norms || - || and | - |, respectively,
such that X is continuously embeded in Y. Let {S(¢);¢ > 0} be a Cy- semigroup on
Y and F € Lip(X,Y) N CYX,Y), the set of Lipschitz and continuously differentiable
mappings from X into Y. The evolution equations take the form

(1.1) du(t)/dt = Au(t) + Fu(t), t>0
(1.2) u(0) = zo

where 5 € X and A is the infinitesimal generator of {S(t);¢ > 0} satisfying |S(¢)y| <
Me“ty|fort >0andy €Y.

We assume the following conditions:

(S1) S(t)Y € X for t > 0 and S(t)z € C([0,00); X) for z € X.

(S2) Y =Y1®@Y; and P,S(t) = S(t)P; for i = 1,2 and t > 0, where Y is a closed
linear subspace and P; is a projection from X onto Y;.

(S3) {S(t)Py;t > 0} forms a uniformly continuous semigroup on Y.

(S4) There exist constants «, 8 > 0,7 € [0,1),7 < —max{«, 8} and My, My, M3, My,
Mz > 0 such that

(1.3) lyll < Milyl, y € Y1,
(1.4)  |e™S@)Pi| < Mae*|y, t<0,y €Y,
(1.5) ]le‘"tS(t)Pg:U[l < Mge—BtH:cH, t>0,z€ X,

(1.6) le ™S () Payll < (Mat™ + Ms)e™ly], - t>0,yeY.
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The above assumptions ensure the unique mild solution u(t; zo) € C([0, 00); X) of (1.1)
and (1.2) for each uy € X (e.g., see [14]). It is known ([1],[5]) that we obtain the
existence of IMs for (1.1) under the above conditions.

Theorem 1.1. Let (S1)-(S4) be satisfied. In addition we assume

M, M3 K (o, B) Lip(F)

(1.7) K(a,B)Lip(F) <1 and I~ K(a B)Lip(F) <1,
where
(1.8) K(a,B) = M{M;Mya™' + M,T(1 —~)B8""! + M:87"}

Lip(F) the Lipschitz constant of F: X — Y, I' the gamma function. Then there erists
h € CY(Y1, P,X) whose graph M = {y + h(y) : y € Y1} is an IM for (1.1), that is,

(a) If o € M, then u(t;zo), the mild solution of (1.1) and (1.2), belongs to M for
allt > 0.

(b) For each xo € X there exists a unique element xy € M such that

sup e ™||u(t; zo) — u(t; z3)|| < co.
t>0

Since the solution on M must be of the form u(t) = p(t) +h(p(t)) with p(t) = Pru(?),
the restriction of (1.1) to M yields

(1.9) dp/dt = Ap+ P, F(p+ h(p)), p € Y,

whose long-time behavior is equivalent to that of (1.1) because by virtue of (b) the IM
M attracts every orbit at an exponential rate. (1.9) is called an inertial form for (1.1).

2. APPROXIMATIONS OF IMS

We approximate (1.1) by the following finite difference scheme of the form
(2.1) 2 = C(\)zF ™t + MK Fo(zp™!), n,l €N

in a space Y; approximating Y in some sense, where Ay | 0 as £ — oo, C()\;) and K
are given operators in B(Y},Y;) and F} is a given nonlinear operator in Yy stated below.
We denote by B(W, Z) the space of bounded linear operators from a Banach space W
into a Banach space Z. The norm in B(W, Z) will be denoted by | - |lw,z. We make
the following assumptions.

(C1) Let X and Y are reflexive Banach spaces such that X is densely and continuously
embedded in Y and that Y = Y; @ Y5, the direct sum of a finite dimensional subspace
Y7 and a closed subspace Y.

(C2) For each £ € N let X, and Y; be Banach spaces with norms || - ||, and |-
|¢, respectively, such that X, is continuously embedded in Y,. Moreover, there exist
Vi € B(Y,Y:) N B(X,X;) and W, € B(Y,Y) N B(Xy, X) such that limp,o [Vayle =
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ly|7 limy— o0 HVN?”e = HCC“, limy_, 00 |W£V2y - yl = 0 and ley =Y for z € X,y €Y
and that both |W;|ly, v and ||W;||x, x are bounded in £.

(C3) There exist closed subspaces Y;; and Yy such that Y, = Y @Yy, Vi P = PV
and WPy, = P,W, for i = 1,2, where P; (resp. Fp;) denotes a projection from Y onto
Y; (resp. Yz onto Yy;).

(C4) The linear operators C(\¢) and K satisfy: (i) there exist M > 0 and w > 0
such that [C(\)™yle < Me“™t|y|, and |Kpyle < Me“t|y|, for £,n € N,y € Yp; (ii)
limy_, o0 [(Kz — I)Vayle = 0 for y € Y; (iii) for each ¢,/ € N and i = 1,2, C(\y)
commutes with Py, C(\) with Ky, K; with Py, C(\) with C(\) and C()\,) with
I~Q/ respectively, where C~'(/\) WeC(A\)V; and Ky = WK, V. :

(C5) A is a densely defined linear operator in Y such that Y1 C D(A), the range of
I — \gA is dense in Y for some Ay > 0 and

Jim AN C() = DVay = VeAyle =0 for y € D(A).

(C6) The inverse of C(\;) Pr1 exists in B(Yz1) and there exist constants o, 3 > 0, v €
0,1),7 < —max{«a, 8} and My, .-, M5 > 0 such that
n

(2.2) | Praylle < M1|Puyle

(2.3) [C(Ae)Per] ™ Poryle < Mae™ (Tl

(2.4) IC(Ae)™ Pralle < Mael1= P ],

(2.5) IC(A)" P Keylle < {Ma((n +1)Xe) ™" + M5}elm=ms 1y |,

for n>04>1,z€ Xp,y €Y.
| (C7) Fy € CY(X,,Yz) and there exists a constant Lp > 0 satisfying

|Fp(€1) — Fu(€2)le £ Lplléy —&2lle for£ €N, £1,8 € Xo.

(C8) For each z,z € X and each positive sequence {14} convergent to 0 we have

Jm |[Fy(Vez) — Ve F(z)]e = 0,

—00

elim |DE;(Vox)Vez — Vi DF(z)z| =0, and

—00

lim ( sup |[(DE;(Vez + &) — DEFy(Vyz))Vez|e) = 0.

£—00 g, <y

To construct an IM for (2.1) we introduce the Banach space ¢, of sequences Z =
{zn}n<o in X; with the norm HmHé") = sup,<o€ " M|z, |le. Let By be a bounded
subset of Yj;. We denote by BC(By,c; ) the Banach space consisting of bounded and

continuous functions ¢ : By — ¢, with the norm ”¢ng) = SUP¢ep, ||¢(§)||1(5”) . We shall

write 1) € BC(By,c,) as

(&) ={¥(€;n)}nco €,  for € By
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Then we define the mapping H, from BC(B,c, ) into itself by

26) (Hep)(,n) = RfE =M 7 BT PuKeFy(0(6,9)

1=—1

e Y QT PRk (€, D)

1=n-+1
for ¢ € B; and n < 0. Here Ry = C(\¢)Pr1 and Q¢ = C(A\;)Pp2. Furthermore we define
(2.7) he (€) = ((He)*1ho)(€,0) — €

with _
Yo(€,n) =¢ for n < 0.
Then we have ([10])
Theorem 2.1. Let (C1)-(C7) be satisfied. In addition we assume

(2.8) K(a,B)Lrp <1 and 1 — K f)Lr <1
where

(2.9) k(a, B) = M{MMaa™" + MT(1 —7)8" " + MzB™'},
and

M! = M; max{1, lim |Wi||x, x}, i=34,5
{—00
Then, for every £ € N there exists hy € C*(Yy1,¢; ) whose graph My = {£ + hy(€);€ €
Ye1} is an IM for (2.1). Moreover, we have for each bounded set By C Y1

(2.10) Jim sup [[hk(€) = he(€)lle =0
—X¢eB,;
and
(2.11) Jim sup || Dhek (§) — Dhe(E)ll(ves x01) = 0-
: —0 £eB,

From this theorem the inertial form for (2.1) is described by the system of equations

(2.12) PPt = C(\)pp + MEKePouFr(pf + he(0}))
p? € Yo, n,l €N

Furthermore, as an approximate inertial form for (2.1) we may employ the following
system of equations with some &

(2.13) Pt = C(\)p} + MK Por Fo (0} + her(27))

We emphasize that (2.13) can be solved for pj explicitly.
Now we have our main result which is proved in [12].
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Theorem 2.2. Let (C1)-(C8) and (2.7) are satisfied. Then, conditions (S1)-(S4) and
(1.7) hold true with the semigroup generated by the operator A in (C5). Consequently,
there exists h € C1(Yy, P, X) whose graph is an IM for (1.1). Moreover we have for
each bounded set B C Y;

(2.14) Jim sup [[hg(Vey) — Veh(y)lle = 0
—>ooye
and
(2.15) 11m sug | Dhe(Vey) — Ve Dh(y) || B(v;,x.) = O-
£—00 4 ¢

From this theorem we can employ (2.13) as an explicit C!- approximation of the
inertial form (1.9). The C! closeness would be a necessary and important step toward
establishing a relationship between the dynamics of the PDE and its approximation.

3. KURAMOTO-SIVASHINSKY EQUATIONS

We consider the renormalized Kuramoto-Sivashinsky equation with periodic bound-
ary condition, with period L

ws + D*u + D?*u+uDu =0 (z,t) e R x RY,
(3.1) u(z,t) = u(z + L,t) (z,t) e R x RT,
u(z,0) = ug(x) z € R.

Here D denotes 9/0z or d/dz. Let H™ (0, L) denote the subspace of the Sobolev space

per
H™(0, L) consisting of functions which, along with all their derivatives up to order

m — 1, are periodic with period L. A function u defined a.e. on (0, L) is said to be odd
whenever u(z) = —u(L — z) a.e. in (0, L). Following Foias et al. [4] and Foias and Titi
[6] we set

Y ={uelL?

per

(0,L);u is odd}
L
<y, > = / u(z)v(x)dr for u,veY
0
lu| = V< u,u > for veVY
X ={ue€ H.,,.(0,L);u isodd}
lu|| = | D?ul for ve X

Au=—-D*u  for ue D(A)= 0,L)nY

per

and

Ru = —D?*u — uDu for uveX.
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Then (3.1) is written as the following evolution equation in the Hilbert space Y’

(3.2)

du(t)/dt = Au(t) + Ru(t), t>0
U(O) = Up

It is known (see [4]) that for every ug € Y there exists a unique solution u(t) of (3.2).
Moreover, for every r > 0 there exists a time 7™ (r) > 0 such that ||u(t)|| < ro for all
t > T*(r) and ug € Y with |ug| < r, , where rg is a constant which is independent of
r. Hence, the study of asymptotic behavior of solutions to (3.2) can be reduced to the
study of the prepared equation

(3.3) du/dt = Au + Fu, t>0
where
Fu = —D?*u — p(||ul)uDx,

peCT(R),0<p<1,
p(s)=1 for |s|<rmy, p(s)=0 for |[s|>2rg

The operaﬁor —A is a positive selfadjoint operator in Y and the functions
er(z) = sin(2rkz /L)

are eigenfunctions of the operator A with corresponding eigenvalues vy, = (2wk/L)* for
k=1,2,---.{y/2/Le}3>, forms an orthonomal basis for Y. We can easily see that the
conditions (S1)-(S4) and (1.7) in Section 1 are satisfied with Y; = span{e;, ez, - ,en},
Yy = span{enyi,eny2,-- },d = 8 = (vny1 —vN)/2,0 = —(n1 +un)/2,7 =
1/2,M' = My, = M}, = 1,M] = \/uy and M{ = /N1 if N is sufficiently large.
Therefore, (3.3) has an inertial manifold.

We shall approximate (3.1) by finite difference schemes. Following Foias and Titi
[6], we introduce the set Sgdd,pe'r consisting of /-dimensional vectors £ = (o, - ,&—1)
which satisfy

Sj:_ge—j ,fOI' j=172>"'7£_17 50:0

and are extended periodically to a double infinite sequemce such that
gj—i-le:gja ]:07:}:1ai27

For £ > 1 we set

-1
L
Yo = Xo = Sgagpers <& >e= 7 ];)&Ck,

I€le = /<& E>p for &,( €Yy and

€lle = [Aegle for &€ Xy,
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where
2 -1 0 0 0 -1
, -1 2 -1 O 0 0
l o -1 2 -1 0 0
De==ga |
0 0 o -1 2 -1
-1 0 0 o -1 2

Define 6, : C([0, L]) — R* by

Op(u) = (u(zo), u(z1), -+, u(Te-1)),

where z; = jh for j =0,1,--- ,£—1, and h = L/¢.

Lemma 3.1. Let 4y = [(£—1)/2], the integer part of ({ —1)/2. Y} is an £o-dimensional
Banach space with the norm |- |z. {6i(e1),0c(e2), -+ ,0(er,)} forms an orthogonal basis

for Yy with |0e(ej)]e = +/L/2.

Lemma 3.2. 0;(ex) are eigenvectors of Ay : Yo — Y with corresponding eigenvalue
—(2/h)?sin?(wk/L) for 1 < k < £q.

In what follows we set
uh = (2/R)*sin' (nk/0), k=1,2,--- Lo

Notice that (2/7)*vy < pé <y for 1 < k < 4.
Define linear operators V; : Y — Y; and Wy : Yy, — Y as follows.

Viu = 0p(ug) for ueY,

where uy = 250:1 ae; with oy = 207! < u,e; >. Next, thanks to Lemma 3.1, every
£ € Yy can be written uniquely as

£ =a10p(er) + -+ + ag,0e(eq,)-
We then set
W€ = azeg + -+ + TN
Finally, we set

Y;1 = span{f(e1),--- ,0e(en)}, and
Yyo = span{f;(eni1), -+ ,00(es,)} for N <Ly.

It is easy to see that conditions (C1)-(C3) in Section 2 hold true in this case.
We here consider the following semi-implicit discrete scheme for (3.1):

€i+1 _ €z ; ) . . .
(3.4) v +AZ((1—0) + 66T + Fy(€) =0, &' eY;
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where \; — 40 as £ — oo, 271 < 0 < 1, F(€) = —p(ll€]I7)(De€ + BY(€,€)) and
Bf .Yy xY; — Yy is defined as follows: For every £, £ € Yy the k-th element Bi (&,€) of
BY(€,€) is given by

Bi(¢,6) = 6_1h{§k(ék+1 — &e1) + errber1 — Ee—1bka}-
To apply the preceding results put
COe) = (I — (1 —0ONADT +0XA7)7T
and
Ky = (I +0)002)71

Then (3.4) can be rewritten as (2.1). We have already shown in [2] that conditions (C4)-
(CG) hold with M = M2 - M3 = 17 W = 0, M1 = VHUN, M4 = 2, M5 = \/2/JJN+1, a =
B=(vNy1—vNn)/4, n=(vNy1+vN)/2 and v =1/2.

Finally, to see (C7)and (C8) it suffices to note that

DF(u)v = — D% — 2p'(||ul|?) < D?*u, D*v > uDu
— p(||lu||?) (wDv + vDu) for u,ve X

and

DE,(€)n = — A — 20 (|€17) < Ag€, Ao >¢ BHE, €)
—p(lI€17)DB(€,6)n

for € = (o, ,&—1), m= (N0, - ,Me—1) € Yy, where the k-th element of DBe(g,g)n is
defined by

{DBY(&,&n}r =(6h) " (k1 + &k + Ex—1) M1 — T—1)
+ (Gh)_l(§k+1 —&k—1)(Mh+1 + Mk + Mk—1)-

As a result, one can apply Theorem 2.2 to the Kuramoto-Sivashinsky equation. (3.1).

REFERENCES

1. S.N.Chow and K.Lu, Invartant manifolds for flows in Banach spaces, J.Differential Equations 74
(1988), 285-317.

2. S.N.Chow, K.Lu and G.R.Sell, Smoothness of inertial manifolds, J. Mathe. Anal. Appl. 169 (1992),
238-321.

3. F.Demengel and J.M.Ghidaglia, Inertial manifolds for partial differential evolution equations under
time-discretization: Existence, cnvergence and applications, J. Math. Anal. Appl. 155 (1991), 177-
225.

4, C.Foias, M.S.Jolly, I.G.Kevrekidis and E.S.Titi, Dissipativity of numerical schemes, Nonlinearity
4 (1991), 591-613. '

5. C.Foias, G.R.Sell and R.Temam, Inertial manifolds for nonlinear evolutionary equations, J.Differ-
ential Equations 73 (1988), 309-353.



71

6. C.Foias and E.S.Titi, Determining nodes, finite difference schemes and inertial manifolds, Non-
linearity 4 (1991), 135-153.

7. M.S.Hirsch, C.C.Pugh and M. Shub, Invariant Manifolds, Lecture Notes in Mathematics Vol. 583,
Springer- Verlag, Now York, 1977.

8. D.A.Jones and E.S.TiTi, C! approzimation of inertial manifolds for dissipative nonlinear equa-
tions, J. Differential Equations 127 (1996), 54-86.

9. K.Kobayasi, Convergence and approzimation of inertial manifolds for evolution equations, Differ-
ential and Integral Equations 8 (1995), 1117-1134.

10. K.Kobayasi, Inertial manifolds for discrete approzimations of evolution equations: Convergence
and applications, Advances in Math. Sci. and Appl. 3 (1993/1994), 161-189.

11. K.Kobayasi, C1 approzimations of inertial manifolds for nonlinear evolution equations, Gakujutsu
Kenkyu, School of Education, Waseda Univrtsity, Series of Mathematics 45 (1997), 25-35.

12. K.Kobayasi, C1 approzimations of inertial manifolds via finite differences, preprint.

13. J.Mallet-Paret and G.R.Sell, Inertial manifolds for reaction-diffusion equations in higher space
dimensions, J. Amer. Math. Soc. 1 (1988), 805-866.

14. A.Pazy, Semigroups of linear operators and applications to partial differential equations, Springer
-Verlag, New York, 1983.

DEPARTMENT OF MATHEMATICS, SCHOOL OF EDUCATION, WASEDA UNIVERSITY, 1-6-1 NIsHI-
WasEDA, SHINJUKU-KU, Tokyo 169-50, JAPAN



