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Generalized Fractional Calculus of the H-Function

Megumi Saigo* [PH45 ] (WK% FRE)

Anatoly A. Kilbas' (NG N—TEN KT« RFL—)
Abstract

The paper is devoted to study the generalized fractional calculus of arbitrary com-
plex order for the I7-function defined by the Mellin-Barnes integral

1

pa () = 2mi

pa / My ()27 °ds,

where the function 3(7%"(s) is a certain ratio of products of Gamma functions with the
argument s and the mntour € is specially chosen. The considered generalized fractional
integration and differentiation operators contain the Gauss hypergeometric function
as a kernel and generalize classical fractional integrals and derivatives of Riemann-
Liouville, Erdélyi-Kober type, etc. Tt is proved that the generalized fractional integrals
and derivatives of IT-functions are also H-functions but of greater order. In particular,
the obtained results define more precisely and generalize known results.

1. Introduction

This paper deals with the H-function IT)%"(z). Tor integers m,n, p, gsuch that 0 < m < gq,

0 £n < p,fora;, by € Cwith Cof the ﬁold of complex numbers and for a;, 5; € Ry = (0, 00)
(= 1,2, ~,pyJ = 1,2,---,q) the II-function II7%"(z) is defined via a Mellin-Barnes type

integral in the following way:
Aiy, i )1,
AL e |z
(bj’ ﬁj)Lq )

1 mn (ai, o)1y
£

(a17a1)7 Y (ap’ O‘P)

Hm,n.(z) = I[m.n z
Pq Pq l: (bl’ﬁl)a"'a(bq?ﬂ‘l)
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where the contour £ is specially chosen and

(ai, 0’-i)1,p

(bja ﬁj)],q

= —, (12)
I1 Tlai+ais) [ T —b;—pBss)

i=n+1 j=m+1

ﬁ F(bj + ﬁjS) ﬁ F(l — a; — ais)
Hoi () = 3G [ t ] === '

in which an empty product, if it occurs, is taken to be one. Such a function was introduced
by S. Pincherle in 1888 and its theory has heen developed by Mellin [10], Dixon and Ferrar
[2] (see [3, §1.19] in this connection). An interest to the H-function arose again in 1961
when Fox [4] has investigated such a function as a symmetrical TFourier kernel. Therefore
this function is sometimes called as Fox’s II-function. The theory of this function may be
found in [1], [9, Chapter 1], [17, Chapter 2] and [11, 8.8.3].

Classical Riemann-Liouville fractional calculus of real order [17, §2.2] (see (2.1) - (2.6)
below) was investigated in [12] - [14], [18] and [11]. The right-sided fractional integrals and
derivatives of the IT-function (1.1) were studied in [12] - [14] and the results were presented
in [18, §2.7], where the case of left-sided fractional differentiation of the II-function was also
considered. The left-sided fractional integration of the H-function was given in [11, 2.25.2].
Such results for the generalized fractional calculus operators with the Gauss hypergeometric
function as a kernel (sce (2.7) - (2.10) below), being introduced by the first author {15, were
obtained in [16]. |

However, some of the results obtained in [12] - [14] (cited in [18]) and [16] can be taken
to be more precisely. Moreover, these results were given provided that the paramecters
a;,bj€Canda; >0,3;>0(t=1,2,---,pij = 1,2,---,q) of the I-function satisfy certain
conditions. These conditions were based on asymptotic behavior of IT]."(z) at zero and
infinity. In [5] we extended such the known asymptotic results for the /-function to more
wide class of parameters. '

In [7], [8] we have applied the obtained asymptotic estimates in [5] to find the Riemann-
Liouville fractional integrals and derivatives of any complex order of the II-function. In
particular, we could make more precisely the known results from [12] - [14], [18] and [11].

The present paper is devoted to obtain such type results for the generalized fractional
integration and differentiation operators of any complex order with the Gauss hypergeometric
function as a kernel. In particular, we give more precisely some of the results from [16] and
generalize the results obtained in [7], [8]. The paper is organized as follow. In Section 2 we
present classical and generalized fractional calculus operators and some facts from the theory
of Gauss hypergeometric function. Sections 3 and 4 contain the result from the theory of
the H-function. The existence of II"."(z) and its asymptotic behavior at zero and infinity
is considered in Section 3 and certain reduction and differentiation properties in Section
4. Sections 5 and 6 deal with generalized fractional diflerentiation of the I7-function (1.1).
Sections 7 and 8 are devoted to the generalized fractional differentiation of the H-function.
Another type of fractional integro-differentiation of the H-function is given in Section 9.
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2. Classical and Generalized Fractional Calculus Operators

For a € C,Re(a) > 0, the Riemann-Liouville left- and right- qu]od fractional ca]culus
operators are defined as fol]ow [17, §2.3 and §2 1]

(18.1) (@) = ‘1 f(t dfa (z > 0), (2.1)
~ T(a) Jo )
s L 2

and

d \Me@r 1a+fRe(n)]
f (x) = dr Ty f)()

I

d [Re(a)]+ 1 . f(t)
(T) I‘(l—aﬂL [Re(a)]) / (z — t)o-[Re(a)] dt (x> 0), (2.3)

g\ Re@)+ 1-a+[Re(n)]
- (1) (@)

4\ Re@l+ 1 : oo I
B (_Z) e @) L o > 0. @4

respectively, where the symbol [k] means the integral part of a real number &, i.e. the largest
integer not exceeding k. In particular, for real a > 0, the operators Dg, and D2 take more
simple forms '

[al+1
()0 =(5) (5w

d [a]+1 1 - f(f) ' |
:<3;) ek eegm ¢ >0, (2.5)

and

[a]+1 :
(D‘jf) () = (——%) (]l'“{ﬂ}f) (2)

fal+1 oo
:(‘%) m—{a / — o 4 @>0), (26)

respectively, where {x} stands for the fractional part of k, i.e. {k} = k — [K].
For a,3,7 € C and z > 0 the generalized fractional calculus operators are defined by
[15]

roF

( "’f)( r) = o) /0 (x—1)*"1,F, ((H B, —n;a; 1—_) f@t)dt 2.7)
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(Re(a) > 0);

(1377) 6 ):(,i) (I"*"" ") (@) (Re(a) € 05 = [Re(—a)] 415 (29

(1297f) (@ 918 o (ak B-mosl = ) SO (29)

(Re(a) > 0);

(1287f) (@) = (—(—’) (rertmfmn /)@ (Re(a) £0;n=[Re(=a)]+1);  (2.10)

and
(D8£75) @) = (o ""1) )
((h) Jpotmofmnatnen )(a:) (Re(a) > 0;n = [Re(a)] +1); (2.11)
(p2P77) @) = (127 ) ()
:< (1.)) (1B ) () (Re(a) > 0:n = [Re(a)] + 1)) (2.12)
2)

Here oFy(a,b;c;2) (a,b,c,z € C) is the Gauss hypergeometric function defined by the

series
s ((l)k(b)k, Zk
Fi(a,bic:2) = — 2.1
2 1((1 ), C, ) kz—% ((,‘)k X ( 3)
with
I k
(@o=1, ()r=ala+1)---(atk-1)= (;‘(:) ) (k € N), (2.14)
‘where T'(z) is the Gamma function [3, Chapter 1] and N denotes the set of positive integers.
The series in (2.13) is convergent for |z| < 1 and for |z| = 1 with Re(c—a—1b) >0, and
can be analytically continued into {z € C : |arg(1 = 2)| < 7} (see [3, Chapter 11]).
Since
QFI(O,b. c; Z) =1 (215)
for B = —a, the generalized fractional calculus operators (2.7), (2.9), (2.11) and (2.12)
coincide Wlth the Riemann-Liouville operators (2.1) - (2.4) for Re(a) > 0
(o) @ = (1) @, (127) @) = (121) @), (2.16)

()@= (), (@ - (e e
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According to the relation [3, 2.8(4)]
2Fi(a,bra;z) = (1-2)7", (2.18)

when 3 = 0 the operators (2.7) and (2.9) coincide with the Erdélyi-Kober fractional integrals
[17, §18.1]:

(13870) @ = Sy [l =0 = (1af) @) (ene CRele)>0), (219)

(12°7f) (@) = ﬁ [T w=wrter gt = (Kpof) @) (0vn € CRe(a) > 0). (220)

Therefore the operators (2.7), (2.9) and (2.11), (2.12) are called ”generalized” fractional
integrals and derivatives, respectively. Moreover, the operators (2.11) and (2.12) are inverse
to (2.7) and (2.9):

D3 = (1), D= (1) - (2.21)

Fractional calculus operators (2.1), (2.3), (2.5), (2.7), (2.8), (2.11) and (2.2), (2.4), (2.6),
(2.9), (2.10), (2.12) are called left-sided and right-sided, respectively [17, §2].

We give some other properties of oI (a,b; ¢; 2) [3, 2.8(46), 2.9(2), 2.10(14)] which will be
used in the following calculations:

P T(el(c—a-1)

I B oy —_ _.2 P e — — . 2'
2 F1(a, b; c; 1) Nc—a )r( .-—-I)) (c#0,-1,-2, ;Re(c—a—-10) > O)s (2.22)
2Fi(a,bicz) = (1= 2" Py Fi(c— a,c — b6 2); (2.23)

Tatb) & (@i
FaT0) 2 (K)?

—log(1 —2)](1 = 2)F (larg(z)| < m;a,b / 0,—1,-2,--), (2.24)

2 Fi(a,bya 4 b;z) = 2v(1+ k) —¢(a-+ k) +4(b+ k)

where 9(z) = I’(2)/T(z) is the Psi function [3, 1.7].
Formulas (2.22) - (2.21) mean the following asymptotic behavior of 2 Fi(a, b; ¢; z) at the
point z = 1.

Lemma 1. Fora,b,c € CwithRe(c) > 0 and z € C, there hold the following asymptotic
relations near z = 1:

oFi(a,b;c;2) =0(1) (2> 1-) (2.25)
for Re(c— a —b) > 0;
oFi(a,b;c;2) = O ((] - z)c'“_b) (z—1-) (2.26)
for Re(c — a —b) < 0; and |
oFi(a,b;c;2) = O (log(1—2)) (z—>1-) (2.27)
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forc—a—b=0, a,b#0,—1,-2,--- and |arg(z)| < .

3. Existence and Asymptotic Behavior of the H-Function
We shall consider the II-function (1.1) provided that the poles
—b; =1

by = (j=1,---,m;l € No) (3.1)
Pi
of the Gamma functions I'(b; + 3;s) and that
—a;+ k
(lik'—'-l——(—l—j— (i:],---,’n;k‘ENo) (32)
Qg ‘

of I'(1 — a; — ;) do not coincide:
Ol(bj+[)7‘ﬂj(ai_k—]) (Z:]a’n7]:]am*l“,]€NO)a (33)

where Ng = NU {0}. £ in (1.1) is the infinite contour splitting poles by in (3.1) to the left
and poles a; in (3.2) to the right of £ and has one of the following forms:

(i) £= £_o is aleft loop situated in a horizontal strip starting at the point —oo + 71
and terminating at the point —oo -+ iy, with —0o < 1 < ¢ < +00;

(ii) £ = £, is a right Joop situated in a horizontal strip starting at the point +-0c0-+ 2,
and terminating at the point -+oo -+ iy with —co < 1 < 2 < +-00.

(iii) £ = £y Is a contour starting at the point 4 —7co and terminating at the point
~ + ico with 4 € R = (—00, +00).

The properties of the H-function I1)%"(z) depend on the numbers a*, A, 6 and p which
are expressed via p,q, a;,0; (i = 1,2,---,p) and b;,B; (j = 1,2,--+,q) by the following
relations:

n P m q
=Y a- 3 at) fi- 3 B (3.4)
i=1 i=n+1 j=1 j=m+1
q P ,
A=Y 3-) ' (3.5)
3=1 i=1
P 9 ) :
6=l 1157, (3.6)
i=1 j=1
q P _
=1 i=1 2

Here an empty sum in (3.4), (3.5), (3.7) and an empty product in (3.6), if they occur, are
taken to be zero and one, respectively.
The existence of the IT-function is given by the following result [6].
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Theorem A. Let a*, A, § and ju be given hy (3.4) - (3.7). Then the H-function HJ"(2)

defined by (1.1) and (1.2) makes sense in the following cases: !
£=L o, A>0, z#0; - (3.8)
£=£L o, A=0, 0<|z|<& | (3.9)
£=£ o, A=0, Re(p)<-1, |2|=26; (3.10)
£=L.,, A0 2#0 (3.11)
L£=£L,0, A=0, [|z]|>6 (3.12)
=L, A=0, Re(p)<-1, |2z|=26; (3.13)
£=2Liw, a >0, [argz|< a;7r’ z # 0; v (3.14)
£="CLio, a =0, Ay+Re(p)<-1, argz=0, z#0. (3.15)

Remark 1. The results of Theorem A in the cases (3.10), (3.13) and (3.15) are more
precisely than those in [11, £8.3.1].

The next statement being followed from the results in [5] characterizes the asymptotic
behavior of the IT-function at zero and infinity.

Theorem B. Let a* and A be given by (3.1) and (3.5) and let conditions in (3.3) be
satisfied.

(i) IfA 2 0or A < 0,a* > 0, then the II-function has either of the asymptotic estimates
at zero

() = 0 () (12| = 0) (3.16)
or '
I (z) = 0 (22 flog()1™") (12 = 0), (3.17)
with the additional condition |arg(z)| < a*m/2 when A <0,a* > 0. Iere
+ . R(‘(bJ)
¢ = d5. [T , (3.18)

and N* is the order of one of the point by in (3.1) to which some other poles of T'(b;+5;s) (7 =
1,---,m) coincide.

(ii) IfFAL0or A > 0,a® > 0, then the I-function has either of the asymptotic
estimates at infinity

7 (2) = 0(2%)  (|z] — o) (3.19)
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H™(2) = O (2flog(2)]Y) (2] = c0), (3.20)

with the additional condition |arg(z)| < a*n/2 when A > 0,a* > 0. Ilere

0 = max [M—l—] , (3.21)

15isn Qa;

and N is the order of one of the point ay in (3.2) in which some other poles of I'(1 — a; —
«;8) (i =1,---,n) coincide.

4. Reduction and Differentiation Properties of the H-Function

In this and next sections we suppose that the conditions for the existence of the H-
function given in Theorem A are satisfind.

The following two Lemmas which characterize symmetric and reduction properties of the
IT-function follow from the definition of the IT-function in (1.1) - (1.2).

Lemma 2. The H-function (1.1) is commutative in the set of pairs (a1, 1), - - -, (an, an);
in (a1l+l>an+l)7 Tty (apa (}'P); ,1'11 (bl H IBI)a Tty (bm, /Bm) and in (berY . ﬂm»H)a T (bq: /Bq)

Lemma 3. Ifone of (a;,a;) (i = 1,---,n) is equal to one of (b;,3;) (j=m+1,---,q)
(or one of (a;,0;) (i = n+1,---,p) is equal to one of (b, ;) (j = 1,---,m)), then the
IT-function reduces to the lower order one, that is, p,q and n (or m) decrease by unity. Two
such results have the forms

i, @), i, )2,
mre |z (@, )1 = I |2 (@202 (4.1)
' (bja ,Bj)tq-—h (a1, 1) (l’j, ﬂj) 1.g-1
provided that n 2 1 and q¢ > m, and
Qi Qi J1,p-1s b ’6 iy Oij1,p-
I];:lq’n 2 ( )1;0 1 ( 1 fl) — I{;;i—lylé'_ll 2 ( )17) 1 (42)
(bjaﬁj)l.q (b,hﬂj)?q

provided that m 2 1 and p > n.

The next differentiation formulae follow from the definition of the F/-function given in
(1.1) - (1.2) and from the functional equation for the Gamma function [3, §1.2(6)]

T

T - 2) = (4.3)

sin(mz)’
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Lemma 4. There hold the following differentiation formulae for w,c € C,o0 >0

/ k a;, o;
4 I | e2” (@001
dz .' (bja fej) g

—w, o), (a;, oy
= 2RI | e” (o) @i (4.4)
(b]aﬂ) L (k w (T)
/) k a;. i),
(—(-) I ez’ ( N
dz (b5, Bi)1q
Qi Qi )19, \—W, T
= (-1 )k w— k][mf]v‘z] s ( )1}” ( ) : (45)
i (k — W, U)> (hj: rej)l,q

5. Left-Sided Generalized Fractional Integration of the H-Function

In the following sections we treat the H-function (1.1) - (1.2) with £ = £, and under
the assumptions a* > 0 or a* = 0, Ay + Re(y) < =1 for a*, A, jt being given by (3.4), (3.5),

(3.7).

Here we consider the left-sided gonpra lized fractional integration IO+ defined by (2.7).

Theorem 1. Let a,3,7 € C with Re(a) > 0,Re(8) # Re(n). Let the constants
a;,bj € C,a;, 3; >0 =1,---,;;j=1,--+,q9) andw € C,0 > 0 satisly

[Ro(b )

J

o min

2l } + Re(w) + min[0, Re(n — #)] + 1> 0, (5.1)

oy < Re(w) + min[0, Re(n — B)] + 1. (5.2)

Then the generalized fractional integral lgf T of the IT-function (1.1) exists and the following

relation holds:
ai, i),
( )lp ) (13)
(bj’ﬂj)l,q

([0 B, ntw][m n [trr

' - B rrmnt2 o (—.’.&),0’),(—&) A'Fﬂ_nv 0'),((1,;,(}',')]4,
= I, o042 |2 . (5.3)
(,)jvﬂj)l,m (—'w + ﬁa 0)7 (_w —a—1, U)
Proof. By (2.7) we have
a;, Q)1
Igfme e 1t (0001 ) ()
(”j,ﬁj)l,q
=P t (ai, )10
= x—1)*" 1 o F <a+[)‘, —n:a; 1——) I M dt. (5.4
I'(a) / ( 1 z/) " (bj, Bi)rq (>4
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According to (2.25), (2.26), (3.16) and (3.17), the integrand in (5.4) for any x > 0 has the
asymptotic estimate at zero '

t
(x =) 1t¥ oy (a' + 8, —n;a;1 — ;) H™" [l"

— O (tw+ag*+min{0.R0(1I'ﬁ)3) (t — 4-0)
or
-0 (twag* +minf0.Re(n-3)] [log(t)]N*) (t — 10).

Here po* is given by (3.18) and N* is indicated in Theorem B(i). Therefore the condition
(5.1) ensures the existence of the integral (5.4).

Applying (1.2), making the change of variable t = z7, changing the order of integration
and taking into account the formula [11, §2.21.1.11] :

/0 Sz — )1 LR (a biel— —> dt = ?(( (3 fﬁfg’;ﬁ(:ﬁ_ ;')) zotel  (5.5)

(a,b,c,ax € C,Re(a) > 0,Re(c) > 0,Re(a+c—a—10) > 0),
we obtain
(10 S Hor {t”

((l,’, (}‘.,-)]?p i
(bjaﬂj)l,q ]) (2)
g F

— T __yoa- 1w e e mn |
=T /0(1' 1)t o Fy (04 B, —n;a;1 — )Il’q [

,~0-,3 a.,
_ / gmo (
2mil(a) J2~ P | (b,
w—f ag, &)1,
_ x - / g{;,:&n ( )lp
2mi £ (bj’ﬁj)l,q

We note that since £ = £,,5, Re(s) = v and therefore the condition (5.2) ensures the
existence of the Mellin-Barnes integral above. Hence in view of (1.2)

(ai, 0i)1p
IgEMe Hme e x
( o [ (b5, Bi)1,9 D @)
(—(4),0’), ("'w + ﬁ -1, 0'), ((ll', a-i)],p
(bj7 :Bj)l,qa (—w + ;87 0)7 (”w —a-— 7770)

and in accordance with (1.1) we obtain (5.3) which completes the proof of Theorem 1.

Qy, )1,
( N1y dt
(b: Bi)rq

]de/ (z —t)>1gwos F,(aJrﬂ, n,al——)dt

x7%ds.(5.6)

. NMM+w—so)T(l+w—B+n—05)
I'Nl+w—p—so)l(1+w-+ta+n—os)

=z PII e, [x” (5.7)
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Corollary 1.1. Let a € C with Re(a) > 0, and let the constants a;,b; € C,a;, 8; >
0@¢=1,---,p;;j=1,---,9) andw € C,o > 0 satisfy

o min [M] 4+ Re(w) +1> 0, (5.8)
1SjSm | Py
oy < Re(w) + 1. | (5.9)

Then the Riemann-Liouville fractional integral I§, of the H-function (1.1) exists and the
following relation holds:

(a5, ai)rp +
1) = preqrmntl o
(bj,ﬂj)],q ( ) p+1,g+1

(_wv 0)7 ((lia ai)l,p

. (5.10
(bj, Bi)1.9: (—w — @, 0) (510

(s [

Corollary 1.2. Let a,n € C with Re(a) > 0, and let the constants a;,b; € C, oy, B; >
0@=1,---,p;j=1,---,9) andw € C,o > 0 satisfy

o min [RL(I’J—)] 4+ Re(w) 4 min[0, Re(n)] + 1 > 0, (5.11)
1SjSm j
oy < Re(w) + min[0, Re(n)] + 1. (5.12)

Then the Erdélyi-Kober fractional integral I}, of the Il-function (1.1) exists and the follow-
ing relation holds:

(i, @i)1p
' 2) = 2N [2f
(bj,,ﬁj)hq ( ) p+1.q+1

Remark 2. In the case a* > 0,A 2 0 the relation (5.3) was indicated in [16, (4.2)], but
in the assumptions of the result the condition (5.2) of Theorem 1 should be added.

(_w -, U)a ((l,', O‘i)l,p

. (5.13)
(ij ﬁj)l.qa (_L"’ — a1, U)

(f;ntwﬂg;;n {to—

Remark 3. Corollary 1.1 coincides with Theorem 1 in [7]. For real @ > 0 and a* > 0
the relation (5.10) was indicated in [11, 2.25.2.2], but the conditions of its validity have to
be also corrected according to (5.8) and (5.9).

6. Right-Sided Generalized Fractional Integration of the H-Function

In this section we consider the right-sided generalized fractional integration 1% defined
by (2.9).



100

Theorem 2. Let a,3,n7 € C with Re(a) > 0,Re(f) # Re(n). Let the constants
ai,b; € C,a;,3; >0 =1,---,;j=1,---,9) andw € C,o > 0 satisfy '

o o [P 4 o) < minfRe(), R, (6.1)
oy > Re(w) — min[Re(3), Re(n)]. (6.2)

-Then the generalized fractional integral T *B% of the IT-function (1.1) exists and the following

relation holds:
ag, ), .
( )lp }) (I)
(b5, Bi)1q

(Iayﬁﬂlth]'m n I:I«a

_5117,1;2_2(112 1” (aia a‘i)l,pa (—C/J, U)? (_w +a- ﬁ + 1, (T) (63)
(_w + [37 U)a (—w + 7, 0)5 (bj’ ,Bj)l.q
Proof. By (2.9) we have
8 (ai, 0
]a ,ntuHmn ( )
b),ﬂj
°° (auaz)
(”t“f’ F(a+ﬁ, al— )1"'" ° dt. (6.4
P(a)/ o o by, Bi)1a (04

Due to (2.25), (2.26), (3.19) and (3.20), the integrand in (6.4) for any 2z > 0 has the asymp-
totic at infinity

| iy i )1,
(t =) ltwef oy (a + 8, -l — ) Hmn |1 (16,0015
(bja fej)l.q
=0 (tw—min{Re(:’i).Re(n)]_1.| r)'g) (t R +Oo)
or

~-0 (tw—min[R,e(ﬁ’),Re(n)]—1+ag[]Og(t)]N) (i N +OO).

Here p is given by (3.21) and N is indicated in Theorem B(ii). Therefore the condition (6.1)
ensures the existence of the integral (6.1). Applyving (1.2), making the change t = 1/7 and
using (5.5), we obtain

a;, a; ,
e
73/ 1,q x

. 1 /m(i—l)a 1tw(,[3 F(ai"ﬁ ol — 1)I[mn Il
(o) Sz T 2 aa tz) P9 |

(@i, @)1, } di
(bj‘nBj)l,q
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— z / o (ai, i) s| 17%ds
2mil'(o) Je = P9 | (b, B)14
T
. / (r — T)a—l,r[i—w~1 A 0 (a + B, —n;a;1 — I) dr
0 ’

—wtf n’i,ai .
_ x _ / %,T{,n ( )l‘p
2m Je T | (b, Bihg

Since £ = Liyoo, Re(s) = v and therefore the condition (6.2) guarantees the existence of the
Mellin-Barnes integral above. Replacing in (6.5) 2 by 1/z, we obtain (6.3).

: 7%ds. .
P(—w -+ os)l(—w+a+fF-+7+ m)a @ (6:5)

S} T(—w 1 B+ os)T(~w + 4 05)

Corollary 2.1. Let a € C with Re(a) > 0, and let the constants a;, b; € C,a, B >
0G@=1,---,p;j=1,---,9) andw € C,0 > 0 salisly

0 max [M:l} + Re(w) + Re(a) <0, (6.6)
1SiSn Qj;
oy > Re(w) + Re(a). (6.7)

Then the Riemann-Lionville fractional integral I® of the Il-function (1.1) exists and the
following relation holds:

((li? ai)l,p .
Igtw IIm,fl l’(f ’ (l‘) — mw+a II‘I'I"IL —],'nl xo-
( o [ (0js Bi)re priatl

Corollary 2.2. Let a,n € C with Re(a) > 0, and let the constants a;,b; € C,a;, 3; >
0@=1,---,p;j=1,---,9) andw € C,0 > 0 satisly

(a5, )1, (—w, 0)

. (6.8
(—w —a,0), (b, Bj)rq o

alrgiaéxn [Ro_(n(_;z_—;_l_} I Re(w) < Re(n), (6.9)
oy > Re(w) — Re(n). (6.10)

Then the Erdélyi-Kober fractional integral K, of the H-function (1.1) exists and the fol-
lowing relation holds:

a;,
(@, t)l,P (z) = Q?w[[:i,]’;ll 2”

(aia ai)'i.p’ (-—-(.u‘ + n +a, U)

(6.11)
('—w + 7, U)a (ij ﬁj)l,q

F— W Iymm | 4o
(I\,mt H,% [l.

Remark 4. In the case a* > 0, A = 0 the relation of the form (6.3) was indicated in [16,
(4.3)]. But it includes a mistake and should be replaced by (6.3) with the conditions (6.1)
and (6.2).
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Remark 5. Corollary 2.1 coincides with Theorem 2 in [7]. For real @ > 0 and a* > 0
the relation (6.8) was indicated in [18, (2.5)], but the conditions of its validity have to be
also corrected in accordance with (6.6) and (6.7).

7. Left-Sided Generalized Fractional Differentiation of the H-Function

Now we treat the left-sided generalized fractional derivative I’)f,',;q’" given by (2.11).

Theorem 3. Let a,,1 € C with Re(a) > 0,Re(a+ 8+ 1) # 0. Let the constants
ai,bj € C,a;, 3; >0 (i=1,---,p;j=1,---,q9) andw € C,0 > 0 satisly

o 1;2;) [Ro’éb,)] 1 Re(w) +min[0,Re(a+ B+ n)] +1 >0, (7.1)
0y < Re(w) -+ min[0, Re(a+ S+ n)] + 1. (7.2)

Then the generalized fractional derivative D§;>" of the II-function (1.1) exists and the
following relation holds:
(ai’a‘i)lsp ( )
Jr
(b;)"ﬂj)l,q

(—w70)3 (—w —nN—-—a- ﬂ’ U)s (aiaa'i)l.p :|
(b‘aﬂj)l,qa(—w—'/Baa')$(—w—77>(r) '

Proof. Let n = [Re(a)] + 1. From (2.11) we have

(ai, 0i)1p -
(b5, 814 ]) )
(ai, i)1p ]) (), (7.4)

d\"
_ [ L Io_a+n,-—ﬁ—n,a+n——ntw ’]m,n tcr ,
((]a:) ( * - (b Bi)1.

which exists according to Theorem 1 with a, 8 and 1 being replaced by —a +n, —8—n and
a + 1 — n, respectively. Then we find

(ai;ai)l.p N
(bj’ /Bj)l.q :l) (J)

n
d
_ w+Bingrmnt+2 | o
- (—) T Ip+’2,q+2 [J-'

dx

(Dgf”’twll;’fq"‘ [w

(7.3)

_ wtf pymant2 el
= a* "I, 5 040 l:.l-

4o
rq t

(Dgf”"rwn"m

(Dgf"twf];;" [t”

(—w, U)a (_w —a— /8 -1 (7)3 (ah a’i)l,p

(bj’ ﬁj)l.qa ("‘w - /3 —n, U)s (-w -1, U)

] .' (7.5)
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Taking into account the differentiation formula (1.4) we have

(ai, Gf-i)l,p -
(by: Bi)1q D )
_ w_l_ﬁH;Zg;Es [‘)’:” (»_w - ﬂ —n, U)v (—w, (7)7 (—w —Q— ﬁ - n, ”)7 ((7,’, ai)l,p , (76)

.

a,30,w rrmm o
(DO+ I

(bja :Bj)l.qa ('_w - ,6 —n, O-)a (_w -1, 0): (-—UJ - /89 0)

and Lemma 2 and the reduction relation (4.1) imply (7.3), which completes the proof of
theorem.

Corollary 3.1. Let a € C with Re(a) > 0, and let the constants a;,b; € C, a4, 3; >
0@¢=1,--,p;j=1,---,q) and w € C,0 > 0 satisfly the conditions in (5.8) and (5.9).
Then the Riemann-Liouville fractional derivative D, of the II-function (1.1) exists and the
following relation holds:

("i,%‘)lp
’ z) = ¥ O fImnt e
(’)J',,Bj)l,q ( ) p+lg+1

(—w, ), (a;,0:)1p

(b5, Bi)1q: (—w + @, 0) (7.7)

(D:,‘fH;j’;l [z"

Remark 6. Tor real a > 0 and a* > 0 the relation (7.3) was given in [18, (2.7.13)], but
the conditions of its validity have to be corrected in accordance with (7.1) and (7.2).

Remark 7. Corollary 3.1 coincides with Theorem 3 in [7].

8. Right-Sided Generalized Fractional Differentiation of the H-Function

Here we deal with the right-sicdled generalized {ractional derivative D(j"ﬁ'" iven by (2.12).
g g g Y

Theorem 4. Let a,3,n7 € C with Re(a) > 0,Re(a+ B +n) + [Re(a)] +1#0. Let the
constants a;,b; € C, 0,3 >0 (@ =1,---,p;j=1,---,9) andw € C,0 > 0 satisfy

0 max [M-_—l + Re(w) + max[Re(3) + [Re(a)] + 1, —Re(a+ )] <0, (8.1)
15ign Q; .
oy > Re(w) + max[Re(B) + [Re(a@)] + 1, —Re(a + n)]. | (8.2)

Then the generalized fractional derivative D*®™" of the H-function (1.1) exists and the

following relation holds:
A, Ay )1,
( )lp ) (;17)
(ijlgj)l,q

— (—1)[Re(@)}+1 w40 pmi2n [ o

o,8,mw rymmn |40
(D_ ey [t

((l,’, ai)l‘pv (—w7 0)7 (_w - IB + m, U)

. (83)
(_w - ﬂa 0')7 ("w +a+mn, (7)7 (bj’ ,Bj)l,q

p+2.g+2 |71
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Proof. Let n = [Re(a)] + 1. Owing to (2.12) we have

(Dg'g’ntw”;lzn [tg ((li,a‘i)l.r’ )(J)
(ij ﬂj)l-q
(@i, ai)1p }) ), (8.4)

— (____(_l__) I:a+n,—ﬂ«—n.o'+nlwllglén ta
dx (bj’ /BJ) 1.q

which exists according to Theorem 2 with a, 8 and 1 being replaced by —a +n, —8 —n and
a -+ n, respectively. Then applying the differentiation formula (4.5), similarly to (7.5), (7.6),
we find in view of the reduction formula (4.2) that

i, )y,
D [z” @edir 1 )
(bjsﬂj)l,q
d " W nrrm+2.n o
(e

(aia()"i)l.m ('—wa U)a (—(.d - IB+ 7, 0)7 (—w - /H - n,a)
. (_w - ﬂs 0-), (—w - IB -n, U)? (—UJ +a-t 7, U), (bj’/Bj)l,q ’

(ai, )19, (~w, 0), (~w = B+ 1,0)
(_w - /[3 —n, U)’ (_w +a+ 7770')5 (bj7 ,Bj)l,q

_ n,w+f pym+3.n Ny
= (=D)"a*" 3418 [l‘

which implies the formula (8.3).

Corollary 4.1. ILet a € C with Re(a) > 0, and let the constants a;,b; € C, 04, 3; >
0@G=1,---,p;j=1,---,q) andw € C,o > 0 satisly

o max [Ee_(_%)_—;l_} + Re(w) — {Re(a)} + 1 <0, (8.5)
oy + Re(w) — {Re(a)} +1> 0. (8.6)

Then the Riemann-Lionville fractional derivative D* of the H-function (1.1) exists and there

holds the relation:
Dt I 1t° () (8.7)
( ™ [ (b5, Bihq

_ (_‘1)[Re(a)]+113“’_° Hrﬁ 1(1’} 1 [3;"

((li, ai)l,p, (—UJ, U)

(—w+,0), (b, Bj)q . (8:8)

p

Remark 8. The relation of the form (8.7) with real @ > 0 and a* > 0 was proved in
[13, formula (14a)] (see also [12], [14, (2.2)] and [18, (2.7.9)]). But such a formula contains
mistakes and should be replaced by (8.7) with the condition (8.5) and (8.6).
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Remark 9. When a = k € N, the relations (7.7) and (8.7) coincide with (4.4) and
(4.5), respectively.

9. Generalized Fractional Integro-Differentiation of the F1-Function

Here we investigate the generalized fractional integro-differentiation operators Igf T and
TP given by (2.8) and (2.10). The following statements are proved similarly to Theorems
3 and 4 by using the relations (2.8) and (2.10), Theorems 1 and 2, and the properties of the
H-function in Sections 3 and 4.

Theorem 5. Let a,3,7 € C with Re(a) £0,Re(8) # Re(n). Let the constants
a,b; € Ca, 3 >0 =1,---,p;j=1,---,q) andw € C,0 > 0 satisly

o _min [Re(b,-)} + Re(w) + min[0, Re(n — )] 4 1 > 0, (9.1)
1SSm j
oy < Re(w) + min|[0, Re(n — B)] + 1. (9.2)

Then the generalized [ractional integro-diflerentiation Igf M of the I-function (1.1) exists

and there holds the relation
a;, &)1,
(Igf»"zm;'_g" [t” AL ] ) (@)
(bj7 /3j)1.q
(_wa U)a (_w -n + /Ba 0), (ni: ()«'i)l,p

(b, B)1.qs (=0 + B,0), (~w —a—n,0) |

(9.3)

o w-Brymmnt2 R
=X '[[P"FZ.Q“}-z [ﬂ,

Theorem 6. Let a,3,n € C with Re(a) £ 0,Re(f8) + [Re(a)] —1 # Re(n). Let the
constants a;,bj € C,0;,3; >0 (i=1,---,p;j=1,---,9) andw € C,0 > 0 satisly

o max [Ro(ﬂ;) - 1] + Re(w) < min[Re(B) — [Ro(—a)]»—— 1, Re(n)], (9.4)
0y > Re(w) —min[Re(f) — [Re(=a)] — 1, Re(n)]. (9.5)

Then the generalized fractional integro-diflerentiation I%PM of the IT-function (1.1) exists
and there holds the relation
(@i, @)1 ()
xr
(b5, Bi)14

( If’ﬁ’" [ H;':q‘" I:ta
((’i,ai)l‘pa (_w70-)a (—'w +a+ ﬂ + n, U)

(_w + /Ba U)» (_w + 7, U)a (bj)ﬁj)l,q

— w-Bpmi2n | o
=21l 5 qv0 [3--

(9.6)
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Remark 10. The relation (9.3) with a* > 0,A 2 0 was indicated in [16, (4.2)], but
conditions of its validity have to be corrected in accordance with (9.1) and (9.2).

Remark 11. The relations (9.3) and (9.6) for the fractional integro-differentiation op-
erators Ig}”" and 1*%" defined in (2.8) and (2.10) for a € C,Re(a) < 0 coincide with that
(5.3) and (6.3) for the fractional integration operators Ig?”" and 1 defined in (2.7) and
(2.9) for o € C,Re(a) > 0. Though the conditions for validity of (5.3) and (9.3) in Theo-
rems 1 and 5 have the same form, that of (6.3) and (9.6) presented in Theorems 2 and 4 are

slightly different.

In conclusion we note that, as it was mentioned in Remarks 2, 4 and 10, the relations
(5.3), (6.3) and (9.3) for generalized calculus operator Ig‘f " were already known in the case
a* > 0,A 2 0. Further, Remarks 3,5,6 and 8 indicate that the relations (5.10) and (6.8)
for the Riemann-TLiouville fractional integrals I, , I* and (7.3) and (8.7) for the fractional
derivative g, in the case real @ > 0 and a* > 0 were established. TTowever, the F-function’s
asymptotic estimates (3.16), (3.17) at zero and (3.19), (3.20) at infinity allow us to prove
such results uncder more general assumptions a* > 0 and a* = 0, Ay + Re(p) < —1 .
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