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INTEGRAL MEANS OF THE FRACTIONAL DERIVATIVE OF
UNIVALENT FUNCTIONS WITH NEGATIVE COEFFICIENTS

Yong Chan Kim and Jae Ho Choi
[Yeungnam University] — [# %3, {BRAF]

ABSTRACT. By using the definition of fractional derivative (cf., [2]), we investigate the
sharp integral means inequalities of the fractional derivatives of univalent functions with
negative coefficients and extend the sharp results of H. Silverman [5, Theorem 2.2].

1. Introduction and Definitions

Let A denote the class of f (z) normalized by
(1.1) f(2) =z+Zakzk,
k=2

which are analytic in the open unit disk i = {z: z € C and |z| < 1}. Also, let S denote
the class of all functions in .A which are univalent in /. Then a function f(z) belonging
to the class S is said to be in the class K if and only if '

zf"(2)
f'(2)

(1.2) ~ Re (1 + ) >0 (z eU).

We denote by 7 the subclass of S whose functions may be represented by
(1.3) fR)=z=) ar¥  (ax20).
k=2

Silverman [4] showed that f of the form (1.3) is in 7 if and only if 3 g, kar < 1, and
that the extreme points of 7 are

(1.4) f(x)=z and fm(z)=z-2z"/m, m=23, .
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Further a function f of the form (1.3) is in C = 7 N K if and only if Y rep kPap <1,
and that the extreme points of C are g1(2) = z and g2(2) = z — zm/m? (m=2,3,---).

For analytic functions g(z) and h(z) with g(0) = h(0), g(z) is said to be subordinate
to h(z) if there exists an analytic function w(z) so that w(0) = 0, |w(z)| <1 (z € U)
and g(z) = h(w(z)), we denote this subordition by g(z) < h(z).

Many essentially equivalent definition of fractional calculus (that is, fractional deriva-
tives and fractional integrals) have been given in the literature (cf., e.g., [3], [6, p 45]
and [7]). We find it to be convenient to recall here the following definition which were
used recently by Owa, [2] (and by Srivastava and Owa [7]).

Definition 1. The fractional derivative of order X is defined, for a function f(z), by
1 d 7 f(z)

1.5 D = — — 7 _d 0< A<,

- = o ), G 0SA<Y

where f(z) is an analytic function in a simply-connected region of the z-plane containing
the origin, and the multiplicity of (z — ¢)~? is removed by requiring for log(z — () to be
real for z > (.

Definition 2. Under the hypotheses of Definition 1, the fractional derivative of order
n + A is defined by

(1.6) DI f(z) = %Dif(z) (0<A<1lineNy:={0,1,2,---}).

In [5] it is proven that

27 2T
(L.7) LLWWst/Iﬁw%WH

0

forall f € T, 3> 0and 0 < r < 1. In this paper, by using the fractional derivative, we
prove that

' 2w B 2 B
(1.8) / lDi‘f(re’O)l do < / lDi‘fz(rew)l do
0 0

forall fe7,8>0,0<r<1and0 < X< 1. We also obtain the integral means
inequality for D2t f(2) (n=1,2) if f € C(or 7).

2. Main Results

The following result will be required in our investigation.
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Lemma. (Littlewood [1]) If f and g are analytic in U with g < f, then, for >0 and
0<r<li,

27 1B . 2 o 1B
(2.1) /0 ]g(re )| d@g/o lf(re )l do.

Applying the above lemma, we prove

Theorem 1. Let 8 > 0 and fo(2) is defined by (1.4). If f € T, then for z =re® and
0<r<l,

G) D@ o< 5T D) dd (0 A<
i) [ D do < [ [P fa(a)f de (0 <A< D).

Proof. We prove (i). The proof of (ii) is similar and will be omitted. If f(z) = z —
S pe ,akz® (ak > 0), then

D} f(z) = (2 A)< Z@ Ykaxz® 1),

where

(2.2) o(k) = 11:—((’;2—2(—12-};—)) (k>2).

Note that ®(k) is a non-increasing function of &,

. < _
(2.3) 0<®P(k) <®(2) = 57X
Since - .
A _ _ 1.__
D:f2) = 7=y (1 2—/\2)’
we must show that

B

27 o0 5 27 B
-1
/0 1-Y ®(k)kayz dﬁg/o 1- 52| 4
k=2
By Lemma, it sufficies to prove that
_ k-1 _
1 Zfb(k)kakz <1 5N

k=2
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Setting
_ = k-1 __ 1 w(z2)
(2.4) 1-Y &(k)karz*t =1 -
k=2
From (2.3) and (2.4), we obtain
w(2)] < > (2= N8(2kare | < |2] D kax < 2.
k=2 k=2

This completes the proof of (i).

Remark. If A = 0 in (i) of Theorem 1, then it would immediately'yield the result of
Silverman [5, Theorem 2.2].

For the fractional derivative of order 1 + )\, we have

Theorem 2. If f€C and B> 0, then for z=71e* and 0 <r < 1,
@) DI do < [T DI ()P de (0<a<1)
(i) [Z7 DI F(2)Pdo < [T D2 Aga(2)[Pd0 (0 < X< 2/3).

Proof. (i) From the definition (1.6), we have

—-A

1 _Z d . k-
(2.5) DA f(z) = OEY) (1 —’;\If(k)k(k 1)akz" 1) ,

where
' C(k—1)T(1 - M)

I'(k—A)
Note that 0 < ¥(k) < ¥(2) =1/(1 - A).

Since \
142 _ A _ 1
D7 f2(2) = 5 (1 1—,\z>’

T(k) = (k> 2).

it suffices to show that

1= U(k)k(k — 1)agz""? <1 -
k=2



Setting
_ _ k=1 1 _ w(z) ’
1 kgzz\ll(k)k(k 1)az T x

lw(z)] <

Z k(k — 1)agz*?
k=2

By Lemma, the proof of (i) is completed.
(ii) Making use of (1.6) and (2.5), we obtain

DI f(2) = ( Z O(k)k2ay 2" )

where

o DRT(1—A)
ok =—ti—y (k22

oo
< |z|2k2ak < z|.
k=2
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We note that 0 < ©(k) < ©(2) = 1/2(1 — A) for 0 < A < 2/3. Thus the proof of (ii) is

much akin to that of (i), and we omit the details involved.

Denote by 7*(a) and C(a), 0 < a < 1, the subclasses of 7 that are, respectively,
starlike of order o and convex of order a. In [4], Silverman showed that f € T"(a)
if and only if 332 ,((k — @)/(1 — @))ar < 1 and f € C(a) if and only if 3732 ,(k(k —
@)/(1 — a))ax < 1. In addition, the extreme points of 7*() and C(a) are hp(2) =

z—((1—a)/(m—a))z™ and ky(2) = 2 — (1 — @)/m(m — a))z™ for m > 2.

For the cases of 7*(a) and C(a), the proof is much akin to that of Theorem 1 and

Theorem 2, and we omit the details involved.

Theorem 3. (i) If f € T*(a) and B > 0, then for 0 <r <1,

27 2
/ |D;\f(rei9)|"d0 < / mghz(rei")[ﬂ dd  (0<A<])
0 0

and

27 27
f D22 f(rei®) |’ db < / D2 Ahy(re?)Pds (0 <A< 1),
0 0

(ii) If f € C(a) and B> 0, then for 0 <r < 1,

2w B 27 B
/ D2 f(rei®)|” db < / Dka(re®)|Pdo (0 <A< 1),
0 0
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2 27
/ DL f(rei®)|” db < / DI hy(re®)|ds (0< A< 1),
0 0

27 ‘ 3
/ DI f(rei®)|” df < /
0 0

2w

DI ky(re®)7d9 (0 <A< 2/3)

and

o

27 27
/ D2 f(rei®) | d < / D2y (re®)Pds (0 <A< 1).
0 v 0
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