On Modular Invariance Equations

東京医歯大 野村和正 (Kazumasa Nomura)

Modular invariance equations for Bose-Mesner algebras were introduced by Eiichi Bannai [1] in connection with fusion algebras in conformal field theory.

Modular invariance equations are deeply related to spin models. Some spin models have been constructed from solutions of modular invariance equations [2, 3, 5]. Basic theory of modular invariance equations was given by Eiichi Bannai, Etsuko Bannai and François Jaeger [4]. Recently it turned out that every spin model can be obtained from a solution of the modular invariance equation of some self-dual Bose-Mesner algebra [6, 8, 7].

Here we consider the modular invariance equation in the case d=3. We will give formulas which represent the entries of P by three parameters.

Let \mathcal{A} be a Bose-Mesner algebra of a symmetric association scheme of class d on a finite set X, |X| = n. We assume that \mathcal{A} is self-dual so that the eigenmatrix P satisfies $P^2 = nI$. The modular invariance equation for \mathcal{A} takes the form:

$$(PT)^3 = t_0(\sqrt{n})^3 I,$$
 (1)

where $T = \text{diag}[t_0, t_1, \ldots, t_d]$ with d + 1 unknowns t_0, t_1, \ldots, t_d .

First we represent the entries of P by four parameters for any self-dual Bose-Mesner algebra.

Proposition 1 Let P denote the eigenmatrix of a Bose-Mesner algebra such that $P^2 = nI$. Then the entries of P are represented by four parameters $\theta_i := P_{i1}$ (i = 0, 1, 2, 3) as follows.

$$P = \left(egin{array}{cccc} 1 & heta_0 & k_2 & k_3 \ 1 & heta_1 & (k_2/k_1) heta_2 & (k_3/k_1) heta \ 1 & heta_2 & a & (k_3/k_2)c \ 1 & heta_3 & c & b \end{array}
ight),$$

where

$$egin{array}{lll} k_2 & = & rac{ heta_0(1+ heta_1)(heta_0- heta_3+ heta_3(heta_1- heta_3))}{(heta_3- heta_2)(heta_0+ heta_2 heta_3)}, \ k_3 & = & rac{ heta_0(1+ heta_1)(heta_0- heta_2+ heta_2(heta_1- heta_2))}{(heta_2- heta_3)(heta_0+ heta_2 heta_3)}, \ a & = & rac{ heta_0- heta_3+ heta_2(heta_1- heta_3)}{ heta_3- heta_2}, \ b & = & rac{ heta_0- heta_2+ heta_3(heta_1- heta_2)}{ heta_2- heta_3}, \ c & = & rac{ heta_0- heta_3+ heta_3(heta_1- heta_3)}{ heta_2- heta_2}, \end{array}$$

unless the denominators are not zero.

Conversely, the matrix given by the above satisfies $P^2 = nI$ for any θ_i (i = 0, 1, 2, 3) unless the denominators are nonzero.

Next suppose that there exists a diagonal matrix T with diagonal entries t_i (i = 0, 1, 2, 3) which satisfies the modular invariance equation (1).

Proposition 2 Set $s = t_1t_2t_3$ and

$$L = s(t_1^{-1} + t_2^{-1} + t_3^{-1}) - s^{-1}(t_1 + t_2 + t_3).$$

Then

$$t_{0} = s^{3},$$

$$\sqrt{n} = \frac{(s^{3} - t_{1})(s^{3} - t_{2})(s^{3} - t_{3})}{s^{5}L}.$$

$$P_{01} = \frac{t_{1}(s^{2} - t_{1}^{2})(s^{4} - 1)(s^{3} - t_{2})(s^{3} - t_{3})(s^{3}t_{2}^{3} + 1)(s^{3}t_{3}^{3} + 1)}{s^{9}(t_{1} - t_{2})(t_{1} - t_{3})(st_{2} + 1)(st_{3} + 1)L^{2}},$$

$$P_{11} = \frac{t_{1}(s^{3} - t_{2})(s^{3} - t_{3})((s^{2} - s^{-2}) + (st_{1}^{-1} - s^{-1}t_{1}) - L)}{s^{3}(t_{1} - t_{2})(t_{1} - t_{3})L},$$

$$P_{12} = \frac{(s^{3} - t_{1})(s^{3} - t_{3})(s^{2} - t_{2}^{2})(s^{3}t_{1}^{3} + 1)}{t_{1}s^{5}(t_{1} - t_{2})(t_{3} - t_{2})(st_{1} + 1)L}.$$

 P_{0i} $(i \in \{2,3\})$ are obtained by exchanging t_1 and t_i in P_{01} . P_{ii} $(i \in \{2,3\})$ are obtained by exchanging t_1 and t_i in P_{11} . For P_{ij} $(i, j \in \{1,2,3\})$ and $i \neq j$, put $\{i,j,k\} = \{1,2,3\}$, then P_{ij} is obtained by permutating $t_1 \rightarrow t_i$, $t_2 \rightarrow t_j$, $t_3 \rightarrow t_k$ in P_{12} .

Conversely, the matrix P with above entries satisfies $P^2 = nI$ and $(PT)^3 = t_0(\sqrt{n})^3 I$ for any non-zero value of t_i (i = 1, 2, 3) unless the denominators are nonzero.

参考文献

- [1] E. Bannai. Association schemes and fusion algebras (an introduction), J. Alg. Combin. 2 (1993), 327–344.
- [2] E. Bannai. Modular invariance property and spin models attached to cyclic group association schemes, *J. Stat. Plann.* and Inference, to appear.
- [3] E. Bannai and Et. Bannai. Spin models on finite cyclic groups, J. Alg. Combin. 3 (1994), 243-259.
- [4] Et. Bannai E. Bannai and F. Jaeger. On spin models, modular invariance, and duality, J. Alg. Combin., to appear.
- [5] T. Ikuta E. Bannai, Et. Bannai and K. Kawagoe. Spin models constructed from the Hamming association schemes, In Proceedings of the 10th Algebraic Combinatorics Symposium at Gifu University, 1992.
- [6] F. Jaeger. Towards a classification of spin models in terms of association schemes, in "Progress in Algebraic Combinatorics", Advanced Studies in Pure Math. 24, 197–225, Math. Soc. of Japan, 1996.
- [7] F. Jaeger, M. Matsumoto, and K. Nomura. Bose-Mesner algebras related to type II matrices and spin models, *J. Alg. Combin.*, to appear.
- [8] K. Nomura. An algebra associated with a spin model, J. Alg. Combin. 6 (1997), 53–58.