First-order necessary optimality conditions

in

fuzzy nonlinear programming problems

Nagata Furukawa (Faculty of Engineering, Soka University)

1. Fuzzy numbers

Definition 1.1. A fuzzy number A is a fuzzy set with a membership function $\mu : \mathbf{R} \rightarrow [0, 1]$ satisfying the following conditions :

(i) there exists a unique real number m such that $\mu(m) = 1$,

 $t \rightarrow \pm \infty$

- (ii) $\mu(t)$ is upper semi-continuous on **R**,
- (iii) the support supp(A) of A is not a singleton, and $\mu(t)$ is strictly increasing on $(-\infty, m] \cap$ supp(A), and strictly decreasing on $[m, \infty) \cap$ supp(A),
- (iv) in the case where the support of A is not bounded, it holds that $\lim \mu(t) = 0$.

The set of all fuzzy numbers is denoted by $\mathcal{F}(\mathbf{R})$. Especially, the set of all fuzzy numbers whose supports are compact is denoted by $\mathcal{F}^{c}(\mathbf{R})$.

We define a shape function by the following.

Definition 1.2. Let L be a function from \mathbf{R} to [0, 1] satisfying the following conditions :

- (i) $L(t) = L(-t) \quad \forall t \in \mathbf{R},$
- (ii) L(t) = 1 iff t = 0,
- (iii) $L(\cdot)$ is upper semi-continuous on **R**.
- (iv) supp(L) is not a singleton, and $L(\cdot)$ is strictly decreasing on $[0, +\infty) \cap \text{supp}(L)$,
- (v) $\lim_{t \to +\infty} L(t) \leq 0.$

Then the functon L is called a *shape function*.

Let L be a shape function. Let m be an arbitrary real number, and let β an arbitrary positive number. Then an L fuzzy number μ_L is defined by

$$\mu_L(t) = L((t-m)/\beta), \qquad t \in \mathbf{R}.$$
(1.1)

We call *m* the *center* of the *L* fuzzy number, and call β the *deviation* of *L*. In place of (1.1) we will use a parametric representation, that is,

 $(m,\beta)_L$

Given a shape function L, the set of all L fuzzy numbers is denoted by $\mathcal{F}(\mathbf{R})_L$.

According to usual notation, for an arbitrary fuzzy number A, we denote the α -cut $\{t \in \mathbb{R} \mid \mu_A(t) \ge \alpha\}$ of A by A_{α} . In the case where the support is bounded, we define the 0-cut of A by the closure of the support. We identify the shape function L with an L fuzzy number having its center 0 and its deviation 1, that is, $L = (0,1)_L$. For each $\alpha \in [0,1]$, we denote the right endpoint of L_{α} by t_{α}^L . In the case where the support of L is not bounded, we interpret as $t_0^L = +\infty$.

Proposition 1.1. (i) For every shape function L, t_{α}^{L} is continuous with respect to α on (0, 1], and monotonically decreases in the wide sense as α increases on (0, 1]. Especially when L has a compact support, all of these statements hold on the closed interval [0, 1] not on the interval (0, 1].

(ii) If L is continuous on \mathbb{R}^n and has a compact support, then t_{α}^L is strictly decreasing as α increases on [0, 1].

The following definition of an order relation on $\mathcal{F}(\mathbf{R})$ is well known and is called the *fuzzy max order*.

Definition 1.3. Let A and B be two members of $\mathcal{F}(\mathbf{R})$. Then, the relation $A \leq B$ is defined by

$$(\sup A_{\alpha} \leq \sup B_{\alpha}) \& (\inf A_{\alpha} \leq \inf B_{\alpha}) \quad \text{for each } \alpha \in [0, 1].$$
 (1.2)

. In this paper we shall use two types of strengthened versions of the fuzzy max order as follows.

Definition 1.4. Let A and B be two members of $\mathcal{F}^{c}(\mathbf{R}) \cup \mathbf{R}$. Suppose that at least one of A and B belongs to $\mathcal{F}^{c}(\mathbf{R})$ not to \mathbf{R} . Then the order relation $A \prec B$ is defined by

$$\left(\sup A_0 \leq \sup B_0\right) \& \left(\inf A_0 \leq \inf B_0\right),$$
and
$$(1.3)$$

 $\begin{cases} \text{and} \\ \left(\sup A_{\alpha} < \sup B_{\alpha}\right) \& \left(\inf A_{\alpha} < \inf B_{\alpha}\right) & \text{for } \forall \alpha \in (0, 1], \end{cases}$ and the order relation $A \prec B$ is defined by

 $(\sup A_{\alpha} < \sup B_{\alpha}) \& (\inf A_{\alpha} < \inf B_{\alpha}) \quad \text{for } \forall \alpha \in [0, 1].$ (1.4)

Especially when B is a real number in the definition 1.4, we have the following proposition.

Proposition 1.2. For a fuzzy number $A \in \mathcal{F}^{c}(\mathbf{R})$ and a real number t, it holds that

$$A \prec t \Leftrightarrow \sup A_0 \leq t. \tag{1.5}$$

and

$$A \prec t \Leftrightarrow \sup A_0 < t. \tag{1.6}$$

2. One-sided directional derivatives of fuzzy mappings.

Let X be a real normed linear space. Throughout this section, U denotes an open subset of X, and Ω denotes an open convex subset of X.

Let F be a fuzzy mapping from U to $\mathcal{F}(\mathbf{R})$. Let $z \in U$ and $h \in X$. For each $\alpha \in (0, 1]$, we put

$$\eta(\alpha) = \lim_{\lambda \downarrow 0} \frac{\inf F(z + \lambda h)_{\alpha} - \inf F(z)_{\alpha}}{\lambda}, \qquad (2.1)$$

and

$$\xi(\alpha) = \lim_{\lambda \downarrow 0} \frac{\sup F(z + \lambda h)_{\alpha} - \sup F(z)_{\alpha}}{\lambda}, \qquad (2.2)$$

supposing that these two limits exist as finite values.

For $\alpha = 0$, we put

$$\eta(0) = \lim_{\alpha \downarrow 0} \eta(\alpha), \tag{2.3}$$

$$\xi(0) = \lim_{\alpha \downarrow 0} \xi(\alpha). \tag{2.4}$$

By the definition of $\mathcal{F}(\mathbf{R})$, when $\alpha = 1$, each one of $F(z + \lambda h)_1$ and $F(z)_1$ consists of a singleton. Accordingly it holds that $\eta(1) = \xi(1)$.

We put

$$i(\alpha) = \min(\eta(\alpha), \xi(\alpha)), s(\alpha) = \max(\eta(\alpha), \xi(\alpha)).$$
 $\alpha \in [0, 1].$ (2.5)

Assumption I. The functions $\eta(\cdot)$ and $\xi(\cdot)$ are continuous on (0,1]. Assumption II. $i(\cdot)$ is nondecreasing and $s(\cdot)$ is nonincreasing on (0, 1].

Under Assumptions I and II, define $f: \mathbf{R} \rightarrow [0, 1]$ by

$$f(t) = \begin{cases} \max\{\alpha \in [0,1] \mid i(\alpha) = t\} & \text{if } i(0) < t \le i(1) (= s(1)), \\ \max\{\alpha \in [0,1] \mid s(\alpha) = t\} & \text{if } s(1) \le t < s(0), \\ 0 & \text{if otherwise,} \end{cases}$$
(2.6)

for $t \in \mathbf{R}$.

When Assumptions I and II are satisfied, it is easily verified that f defined by (2.6) is qualified as a membership function.

Definition 2.1. When Assumptions I and II are satisfied, the fuzzy number f given by (2.6) is called the one-sided directional derivative of F at z in the direction h, and is denoted by F'(z; h), and then F is said to be onesided directionally differentiable at z in the direction h. If F is onesided directioally differentiable at z in every direction h, then F is said to be one-sided directionally differentiable at z.

Definition 2.2. ([3]) Let F be a mapping from U to $\mathcal{F}^{c}(\mathbf{R})$. Let x_0 be a point of U. Then F is said to be *continuous* at x_0 iff for each $\varepsilon > 0$ there

exists a neigh-borhood $U(x_0)$ of x_0 satisfying that

$$F(x_0) - \varepsilon \preceq F(x) \preceq F(x_0) + \varepsilon \quad \forall x \in U(x_0).$$

Definition 2.3. ([3]) A mapping F from Ω to $\mathcal{F}^{c}(\mathbf{R})$ is said to be convex on Ω iff for every $x, y \in \Omega$ and every $\lambda \in (0, 1)$ it holds that $F(\lambda x + (1 - \lambda)y) \preceq (\lambda \cdot F(x)) \oplus ((1 - \lambda) \cdot F(y)),$ (2.7)

where \oplus and \cdot are the addition and the multiplication, respectively, defined by the usual extension principle. For the sake of simplicity we write (2.7) as

$$F(\lambda x + (1 - \lambda) y) \preceq \lambda F(x) \oplus (1 - \lambda) F(y).$$
(2.8)

Proposition 2.1. Let $F: \Omega \to \mathcal{F}^{c}(\mathbb{R})$ be a convex mapping. Then, for every $z \in U$, $h \in X$ and for each $\alpha \in [0, 1]$, the limits $\eta(\alpha)$ and $\xi(\alpha)$ defined by (2.1) and (2.2), respectively, exist as finite values.

Theorem 2.1. Let L be a shape function whose support is compact. Let F be a convex mapping from Ω to $\mathcal{F}(\mathbf{R})_L$, and let the parametric representation of the mapping be given by

 $F(x) = \left(m(x), \beta(x) \right)_L, \\ \beta(x) \ge 0, \end{cases} \quad x \in \Omega.$

Then we have

(i) both $m(\cdot)$ and $\beta(\cdot)$ are one-sided directionally differentiable in the usual sense at all $z \in U$ and in every direction $h \in X$, and for each $\alpha \in [0, 1]$, $\eta(\alpha)$ and $\xi(\alpha)$ can be expressed as

$$\eta(\alpha) = m'(z;h) - \beta'(z;h)t^{L}_{\alpha}, \qquad (2.9)$$

$$\xi(\alpha) = m'(z;h) + \beta'(z;h)t_{\alpha}^{L}, \qquad (2.10)$$

where m'(z; h) and $\beta'(z; h)$ denote the one-sided directional derivatives (in the usual sense) of m and β , respectively,

(ii) for every $z \in U$ and every $h \in X$, F is one-sided directionally differentiable at z in the direction h, and the directional derivative of F is expressed as

$$F'(z;h) = \left(m'(z;h), |\beta'(z;h)| \right)_{L}.$$
(2.11)

Theorem 2.2. Let *L* be an arbitrary shape function. Let *F* be a mapping from an open subset *U* of \mathbb{R}^n to $\mathcal{F}(\mathbb{R})_L$, having its parametric representation $F(x) = (m(x), \beta(x))_L$, $x \in U$,

$$\beta(x) \ge 0, \qquad x \in U.$$

Suppose that $m(\cdot)$ and $\beta(\cdot)$ are differentiable in the usual meaning on U. For every $z \in U$ and every $h \in X$, then, F is one-sided directionally differentiable at z in the direction h, and the directional derivative of F is expressed as

$$F'(z;h) = \left(\nabla m(z)h, |\nabla \beta(z)h|\right)_{I}.$$
(2.12)

3. Fuzzy nonlinear programming.

3.1. The unconstrained problem.

Let F be a mapping from \mathbb{R}^n to $\mathcal{F}(\mathbb{R})$. We consider the following unconstrained minimization problem:

(P1) Minimize F(x), $x \in \mathbb{R}^n$

where the minimization is taken in the meaning of the fuzzy max order. **Definition 3.1.** A point $z \in \mathbb{R}^n$ is called a *local minimum solution* to (P1), if there exists a neighborhood V of z such that $F(z) \prec F(x) \quad \forall x \in V.$ (3.1)

A point $z \in \mathbb{R}^n$ is called a global minimum solution to (P1), if (3.1) holds for all $x \in \mathbb{R}^n$.

Theorem 3.1. Let L be an arbitrary shape function. Let F be a mapping from \mathbf{R}^n to $\mathcal{F}(\mathbf{R})_L$ with the parametric representation:

$$F(x) = \left(m(x), \beta(x) \right)_L, \\ \beta(x) \ge 0, \end{cases} \quad x \in \mathbf{R}^n$$

Suppose that $m(\cdot)$ and $\beta(\cdot)$ are differentiable on \mathbb{R}^n . If z is a local minimum solution to (P1), then it holds that

$$\begin{cases} \nabla m(z) = \mathbf{0}, \\ \nabla \beta(z) = \mathbf{0}. \end{cases}$$
(3.2)

3.2. The problem with inequality constraints.

Let F be a mapping from \mathbf{R}^n to $\mathcal{F}^{\mathbf{c}}(\mathbf{R})$, and let G_1, G_2, \dots, G_m be m mappings from \mathbf{R}^n to $\mathcal{F}^{\mathbf{c}}(\mathbf{R})$. Let B_1, B_2, \dots, B_m be m elements of $\mathcal{F}^{\mathbf{c}}(\mathbf{R})$. Then we consider the following problem.

(P2)
$$\begin{cases} \text{Minimize } F(x) \\ \text{subject to} \\ G_i(x) \leq B_i, \quad i = 1, 2, \cdots, m. \end{cases}$$

Define the set of all feasible solutions to (P2) by

$$S = \{ x \in \mathbf{R}^n \mid G_i(x) \preceq B_i, i = 1, 2, \cdots, m \}.$$

Definition 3.2. A point $z \in S$ is called a *local minimum solution* to (P2), if there exists a neighborhood V of z such that

$$F(z) \preceq F(x) \quad \forall x \in V \cap S. \tag{3.3}$$

A point $z \in S$ is called a global minimum solution to (P1), if (3.3) holds for all $x \in S$.

Definition 3.3. A point $z \in S$ is called a *local nondominated solution* to (P2), if there exists a neighborhood V of z such that there is no point x in $V \cap S$ satisfying both of $F(x) \leq F(z)$ and $F(x) \neq F(z)$.

Definition 3.4. A point $z \in S$ is called a *local weak nondominated* solution to (P2), if there exists a neighborhood V of z such that there is no point x in $V \cap S$ satisfying $F(x) \prec F(z)$.

Proposition 3.1. (i) If $z \in S$ is a local minimum solution to (P2), then z is a local nondominated solution.

(ii) If $z \in S$ is a local nondominated solution to (P2), then z is a local weak nondominated solution.

Proposition 3.2. Let *L* be a shape function which is continuous on its compact support. Let *F* be a mapping from \mathbb{R}^n to $\mathcal{F}(\mathbb{R})_L$. Then, for a point $z \in S$, the statements (i) and (ii) are equivalent to each other :

(i) z is a local nondominated solution to (P2).

(ii) z is a local weak nondominated solution to (P2).

Proposition 3.3. Let *L* be same as in Proposition 3.2. Let *A* and *B* be two members of $\mathcal{F}(\mathbf{R})_L$ such that $A \leq B$. Then, for the pair *A* and *B*, the statements (i), (ii) and (iii) are equivalent one another:

(i) There exists a number $\alpha_0 \in [0, 1]$ such that

$$\begin{cases} \inf A_{\alpha_0} = \inf B_{\alpha_0} \\ \text{or} \\ \sup A_{\alpha_0} = \sup B_{\alpha_0} \end{cases}$$

- (ii) Either one and only one of the following three statements holds : (ii 1) A = B,
 - (ii 2) $(\inf A_{\alpha} < \inf B_{\alpha}) \& (\sup A_{\alpha} < \sup B_{\alpha})$ for all α

except for $(\inf A_0 = \inf B_0)$,

(ii - 3) $(\inf A_{\alpha} < \inf B_{\alpha}) \& (\sup A_{\alpha} < \sup B_{\alpha})$ for all α

except for $(\sup A_0 = \sup B_0)$.

(iii) Either one of the following three statements holds: (iii - 1) $A_1 = B_1$,

(iii - 2) $\inf A_0 = \inf B_0$,

(iii - 3) $\sup A_0 = \sup B_0$.

In the remainder of this section we assume the following assumptions to the problem (P2). For each $i = 0, 1, \dots, m$, let L_i be a shape function which has a compact support and is continuous on its support. We assume that Fis a mapping from \mathbb{R}^n to $\mathcal{F}(\mathbb{R})_{L_0}$, and that, for each $i = 1, 2, \dots, m$, G_i is a mapping from \mathbf{R}^n to $\mathcal{F}(\mathbf{R})_{L_i}$, and B_i is an element of $\mathcal{F}(\mathbf{R})_{L_i}$. Let

$$F(x) = \begin{pmatrix} m_0(x), \beta_0(x) \end{pmatrix}_{L_0},$$

$$\beta_0(x) \ge 0,$$

$$G_i(x) = \begin{pmatrix} m_i(x), \beta_i(x) \end{pmatrix}_{L_i},$$

$$\beta_i(x) \ge 0,$$

$$x \in \mathbf{R}^n, \quad i = 1, 2, \cdots, m. \quad (3.5)$$

Now, for an arbitrary feasible solution $x \in S$, we define the two kinds of index sets as follows:

$$\tilde{I}(x) = \left\{ i \in \{1, 2, \cdots, m\} \middle| \exists \alpha_i \in [0, 1]; \left\{ \begin{array}{l} \inf G_i(x)_{\alpha_i} = \inf (B_i)_{\alpha_i} \\ \text{or} \\ \sup G_i(x)_{\alpha_i} = \sup (B_i)_{\alpha_i} \end{array} \right\} \right\},$$

and

$$I(x) = \begin{cases} (a) & G_i(x)_1 = (B_i)_1, \\ or \\ (b) & \inf G_i(x)_0 = \inf (B_i)_0, \\ or \\ (c) & \sup G_i(x)_0 = \sup (B_i)_0 \\ holds \text{ true.} \end{cases} \end{cases}.$$

Then, it is easily seen from Proposition 3.3 that the relation

(3.6)

 $\tilde{I}(x) = I(x)$ holds. We call I(x) the index set for the binding constraints at x in the problem (P2). Owing to (3.6), $\tilde{I}(x)$ is also qualified to be called the binding set. But, I(x) is more suitable than I(x) in order to descript optimality conditions as seen later on. The index set $\tilde{I}(x)$ is used only to develop our arguments in the course of deriving optimality conditions.

The following proposition gives a first-order necessary optimality condition in a primal form.

Proposition 3.4. Let $z \in S$ be a local nondominated solution to (P2). Suppose that the following two assumptions hold :

(i) In (3.4) and (3.5), $\{m_i(\cdot)\}\$ and $\{\beta_i(\cdot)\}\$ are all differentiable on \mathbb{R}^n .

(ii) For each $i \notin I(z)$, G_i is continuous at z.

Define

$$\Psi(z) = \left\{ h \in \mathbf{R}^n \mid F'(z;h) \prec 0 \right\}$$

and

$$\Gamma(z) = \left\{ h \in \mathbf{R}^n \mid G_i'(z;h) \prec 0 \quad \forall i \in I(z) \right\}$$

Then it holds that

$$\Psi(z) \cap \Gamma(z) = \phi . \tag{3.7}$$

When $\Gamma(z) = \phi$, the necessary optimality conditon (3.7) holds vacuously. For this reason, we set up a constraint qualification as follows.

Constraint Qualification at $z : \Gamma(z) \neq \phi$.

Under the assumption of Constraint Qualification, first-order necessary optimality conditions in a dual form are given by the following.

Theorem 3.2. Let $z \in S$ be a local nondominated solution to (P2). Suppose the assumptions (i) and (ii) in Proposition 3.4 to be satisfied. Under Constraint Qualification at z, then, there exist multipliers $\{\mu_i; i = 0, 1, \dots, m\}$ and $\{\lambda_i; i = 1, 2, \dots, m\}$ satisfying that

$$\nabla m_0(z) + \mu_0 t_0^{L_0} \nabla \beta_0(z) + \sum_{i=1}^m \lambda_i \nabla m_i(z) + \sum_{i=1}^m \mu_i t_0^{L_i} \nabla \beta_i(z) = \mathbf{0}, \quad (3.8)$$

$$\lambda_i \ge 0, \quad i = 1, 2, \cdots, m, \tag{3.9}$$

$$\lambda_{i} \left(m_{i}(z) - (B_{i})_{1} \right) \left(m_{i}(z) - t_{0}^{L_{i}} \beta_{i}(z) - \inf(B_{i})_{0} \right) \\ \times \left(m_{i}(z) + t_{0}^{L_{i}} \beta_{i}(z) - \sup(B_{i})_{0} \right) = 0, \quad i = 1, 2, \cdots, m.$$
(3.10)

$$\mu_{i} \left(m_{i}(z) - (B_{i})_{1} \right) \left(m_{i}(z) - t_{0}^{L_{i}} \beta_{i}(z) - \inf(B_{i})_{0} \right) \\ \times \left(m_{i}(z) + t_{0}^{L_{i}} \beta_{i}(z) - \sup(B_{i})_{0} \right) = 0, \quad i = 1, 2, \cdots, m.$$
(3.11)

References

- [1] F. M. Ali, A differential equation approach to fuzzy non-linear programming problems, *Fuzzy Sets and Systems* 93 (1998) 57-61.
- [2] P. Diamond and P. Kloeden, Metric Spaces of Fuzzy Sets: Theory and Applications (World Scientific, 1994).
- [3] N. Furukawa, Convexity and local Lipschitz continuity of fuzzy-valued mappings, *Fuzzy Sets and Systems* 93 (1998) 113-119.
- [4] R. Goetschel Jr. and W. Voxman, Elementary fuzzy calculus, Fuzzy Sets and Systems 18 (1986) 31-43.