Some Pseudo-Order of Fuzzy Sets on \mathbb{R}^n

千葉大学教育学部 蔵野正美 (Masami KURANO) 千葉大学理学部 安田正實 (Masami YASUDA) 千葉大学理学部 中神潤一 (Jun-ichi NAKAGAMI) 北九州大学経済学部 吉田祐治 (Yuji YOSHIDA)

Abstract

The aim of this paper is to define an order on a class of fuzzy sets which is extending a pseudo-order for fuzzy numbers, and its characterization and several relations of the previous results are discussed. The idea comes from a set-relation in n-dimensional Euclid space given by Kuroiwa, Tanaka and Ha (1997). We induce the order of a class of fuzzy sets by a closed convex cone and characterize it by using the projection into the dual cone. Especially, a structure of the lattice is described for the class of rectangle-type fuzzy sets.

Keywords: Pseudo-order, fuzzy max order, multidimensional fuzzy sets, rectangle-type fuzzy sets.

1. Introduction and notations

In the theory of optimization it is a quite important problem how to induce a natural definition of order on the class of considering systems. Since it isn't a simple problem about a order on the fuzzy set theory, many auther tried to consider its natural extension.

Ramík and Řimánek [8] has introduced a partial order on the set of fuzzy numbers, called the fuzzy max order. The present authors also tried to optimize the dynamic fuzzy system [4]. Also there are various types of order relations on the class of fuzzy numbers. See [3], [11] and their references. Congxin and Cong [1] have descrived the fuzzy number lattice.

This paper is to extend the fuzzy max order of fuzzy numbers to a class of fuzzy sets defined on \mathbb{R}^n . The pseudo order for fuzzy sets is induced by a closed convex cone K in \mathbb{R}^n and characterized by the projection in the dual cone K^+ . Also, the structure of a lattice is discussed for the class of rectangle-type fuzzy sets. By our works we can imagine the much wider application to the fuzzy optimization problem. Our idea of the motivation originates from a set-relation in \mathbb{R}^n given by Kuroiwa, Tanaka and Ha [5] and Kuroiwa [6], in which various types of set-relations in \mathbb{R}^n are used in set-valued optimizations.

In the remainder of this section, we will give some notations and review a vector ordering of \mathbb{R}^n by a convex cone. Let \mathbb{R} be the set of all real numbers and \mathbb{R}^n an n-dimensional Euclidean space. We write fuzzy sets on \mathbb{R}^n by their membership functions $\tilde{s}: \mathbb{R}^n \to [0,1]$ (see Novák [7] and Zadeh [10]). The α -cut ($\alpha \in [0,1]$) of the fuzzy set \tilde{s} on \mathbb{R}^n is defined as

$$\tilde{s}_{\alpha} := \{ x \in \mathbb{R}^n \mid \tilde{s}(x) \ge \alpha \} \ (\alpha > 0) \quad \text{and} \quad \tilde{s}_0 := \operatorname{cl}\{ x \in \mathbb{R}^n \mid \tilde{s}(x) > 0 \},$$

where cl denotes the closure of the set. A fuzzy set \tilde{s} is called convex if

$$\tilde{s}(\lambda x + (1 - \lambda)y) \ge \tilde{s}(x) \wedge \tilde{s}(y)$$
 $x, y \in \mathbb{R}^n$, $\lambda \in [0, 1]$,

where $a \wedge b = \min\{a,b\}$. Note that \tilde{s} is convex iff the α -cut \tilde{s}_{α} is a convex set for all $\alpha \in [0,1]$. Let $\mathcal{F}(\mathbb{R}^n)$ be the set of all convex fuzzy sets whose membership functions $\tilde{s}: \mathbb{R}^n \to [0,1]$ are upper-semicontinuous and normal $(\sup_{x \in \mathbb{R}^n} \tilde{s}(x) = 1)$ and have a compact support. When the one-dimensional case n = 1, the fuzzy sets are called fuzzy numbers and $\mathcal{F}(\mathbb{R})$ denotes the set of all fuzzy numbers.

Let $\mathcal{C}(\mathbb{R}^n)$ be the set of all compact convex subsets of \mathbb{R}^n , and $\mathcal{C}_r(\mathbb{R}^n)$ be the set of all rectangles in \mathbb{R}^n . For $\tilde{s} \in \mathcal{F}(\mathbb{R}^n)$, we have $\tilde{s}_{\alpha} \in \mathcal{C}(\mathbb{R}^n)$ ($\alpha \in [0,1]$). We write a rectangle in $\mathcal{C}_r(\mathbb{R}^n)$ by

$$[x, y] = [x_1, y_1] \times [x_2, y_2] \times \cdots [x_n, y_n]$$

for $x = (x_1, x_2, \dots, x_n), y = (y_1, y_2, \dots, y_n) \in \mathbb{R}^n$ with $x_i \leq y_i$ $(i = 1, 2, \dots, n)$. For the case of $n = 1, \mathcal{C}(\mathbb{R}) = \mathcal{C}_r(\mathbb{R})$ and it denotes the set of all bounded closed intervals. When $\tilde{s} \in \mathcal{F}(\mathbb{R}^n)$ satisfies $\tilde{s}_{\alpha} \in \mathcal{C}_r(\mathbb{R}^n)$ for all $\alpha \in [0, 1]$, \tilde{s} is called a rectangle-type. We denote by $\mathcal{F}_r(\mathbb{R}^n)$ the set of all rectangle-type fuzzy sets on \mathbb{R}^n . Obviously $\mathcal{F}_r(\mathbb{R}) = \mathcal{F}(\mathbb{R})$.

The definitions of addition and scalar multiplication on $\mathcal{F}(\mathbb{R})$ are as follows: For $\tilde{m}, \tilde{n} \in \mathcal{F}(\mathbb{R})$ and $\lambda \geq 1$,

(1.1)
$$(\tilde{m} + \tilde{n})(x) := \sup_{x_1, x_2 \in \mathbb{R}; \ x_1 + x_2 = x} \{ \tilde{m}(x_1) \wedge \tilde{n}(x_2) \},$$

(1.2)
$$(\lambda \tilde{m})(x) := \begin{cases} \tilde{m}(x/\lambda) & \text{if } \lambda > 0 \\ I_{\{0\}}(x) & \text{if } \lambda = 0 \end{cases} (x \in \mathbb{R}),$$

where $I_{\{\cdot\}}(\cdot)$ is an indicator. By using set operations $A+B:=\{x+y\mid x\in A,y\in B\}$ and $\lambda A:=\{\lambda x\mid x\in A\}$ for any non-empty sets $A,B\subset\mathbb{R}$, the following holds immediately.

$$(\tilde{m} + \tilde{n})_{\alpha} := \tilde{m}_{\alpha} + \tilde{n}_{\alpha} \quad \text{and} \quad (\lambda \tilde{m})_{\alpha} = \lambda \tilde{m}_{\alpha} \quad (\alpha \in [0, 1]).$$

Let K be a non-empty cone of \mathbb{R}^n . Using this K, we can define a pseudo-order relation \preceq_K on \mathbb{R} by $x \preceq_K y$ iff $y - x \in K$. Let \mathbb{R}^n_+ be the subset of entrywise non-negative elements in \mathbb{R}^n . When $K = \mathbb{R}^n_+$, the order \preceq_K will be denoted by \preceq_n and $x \preceq_n y$ means that $x_i \leq y_i$ for all $i = 1, 2, \dots, n$, where $x = (x_1, x_2, \dots, x_n)$ and $y = (y_1, y_2, \dots, y_n) \in \mathbb{R}^n$.

In Section 2, we will introduce a pseudo-order relation on $\mathcal{F}(\mathbb{R}^n)$ which is characterized by the scaralization technique. In section 3, the lattice structure is discussed for the class of rectangle-type fuzzy sets.

2. A pseudo-order on $\mathcal{F}(\mathbb{R}^n)$

First we introduce a binary relation on $\mathcal{C}(\mathbb{R}^n)$, by which a pseudo-order on $\mathcal{F}(\mathbb{R}^n)$ is given. Henceforth we assume that the convex cone $K \subset \mathbb{R}^n$ is given.

We define a binary relation \leq_K on $\mathcal{C}(\mathbb{R}^n)$: For $A, B \in \mathcal{C}(\mathbb{R}^n)$, $A \leq_K B$ means the following (C.a) and (C.b) (c.f. [5], [6]):

- (C.a) For any $x \in A$, there exists $y \in B$ such that $x \leq_K y$.
- (C.b) For any $y \in B$, there exists $x \in A$ such that $x \leq_K y$.

Lemma 2.1. The relation \leq_K is a pseudo-order on $\mathcal{C}(\mathbb{R}^n)$.

Proof. It is trivial that $A \preceq_K A$ for $A \in \mathcal{C}(\mathbb{R}^n)$. Let $A, B, C \in \mathcal{C}(\mathbb{R}^n)$ such that $A \preceq_K B$ and $B \preceq_K C$. We will check $A \preceq_K C$ by two cases (c.a) and (C.b). Case(C.a): Since $A \preceq_K B$ and $B \preceq_K C$, for any $x \in A$ there exists $y \in B$ such that $x \preceq_K y$ and there exists $z \in C$ such that $y \preceq_K z$. Since $z \in C$ such that $z \in$

From the above (a) and (b), we obtain $A \leq_K C$. Thus the lemma holds. Q.E.D.

When $K = \mathbb{R}^n_+$, the relation \leq_K on $\mathcal{C}(\mathbb{R}^n)$ will be written simply by \leq_n and for $[x,y],[x',y'] \in \mathcal{C}_r(\mathbb{R}^n), [x,y] \leq_n [x',y']$ means $x \leq_n x'$ and $y \leq_n y'$.

Next, we introduce a binary relation \leq_K on $\mathcal{F}(\mathbb{R}^n)$: Let $\tilde{s}, \tilde{r} \in \mathcal{F}(\mathbb{R}^n)$. The relation $\tilde{s} \leq_K \tilde{r}$ means the following (F.a) and (F.b):

- (F.a) For any $x \in \mathbb{R}^n$, there exists $y \in \mathbb{R}^n$ such that $x \leq_K y$ and $\tilde{s}(x) \leq \tilde{r}(y)$.
- (F.b) For any $y \in \mathbb{R}^n$, there exists $x \in \mathbb{R}^n$ such that $x \leq_K y$ and $\tilde{s}(x) \geq \tilde{r}(y)$.

Lemma 2.2. The relation \leq_K is a pseudo-order on $\mathcal{F}(\mathbb{R}^n)$.

From the above (a) and (b), we obtain $\tilde{s} \leq_K \tilde{p}$. Thus the lemma holds. Q.E.D.

The following lemma implies the correspondence between the pseudo-order on $\mathcal{F}(\mathbb{R}^n)$ for fuzzy sets and the pseudo-order on $\mathcal{C}(\mathbb{R}^n)$ for the α -cuts.

Lemma 2.3. Let $\tilde{s}, \tilde{r} \in \mathcal{F}(\mathbb{R}^n)$. $\tilde{s} \preccurlyeq_K \tilde{r}$ on $\mathcal{F}(\mathbb{R}^n)$ if and only if $\tilde{s}_{\alpha} \preccurlyeq_K \tilde{r}_{\alpha}$ on $\mathcal{C}(\mathbb{R}^n)$ for all $\alpha \in (0,1]$.

Proof. Let $\tilde{s}, \tilde{r} \in \mathcal{F}(\mathbb{R}^n)$ and $\alpha \in (0,1]$. Suppose $\tilde{s} \preccurlyeq_K \tilde{r}$ on $\mathcal{F}(\mathbb{R}^n)$. Then, Two cases (a) and (b) are considered. Case(a): Let $x \in \tilde{s}_{\alpha}$. Since $\tilde{s} \preccurlyeq_K \tilde{r}$, there exists $y \in \mathbb{R}^n$ such that $x \preccurlyeq_K y$ and $\alpha \leq \tilde{s}(x) \leq \tilde{r}(y)$. Namely $y \in \tilde{r}_{\alpha}$. Case(b): Let $y \in \tilde{r}_{\alpha}$. Since $\tilde{s} \preccurlyeq_K \tilde{r}$, there exists $x \in \mathbb{R}^n$ such that $x \preccurlyeq_K y$ and $\tilde{s}(x) \geq \tilde{r}(y) \geq \alpha$. Namely $x \in \tilde{s}_{\alpha}$.

Therefore we get $\tilde{s}_{\alpha} \leq_K \tilde{r}_{\alpha}$ on $\mathcal{C}(\mathbb{R}^n)$ for all $\alpha \in (0,1]$ from the above (a) and (b).

On the other hand, suppose $\tilde{s}_{\alpha} \preccurlyeq_K \tilde{r}_{\alpha}$ on $\mathcal{C}(\mathbb{R}^n)$ for all $\alpha \in (0,1]$. Then, Two cases (a') and (b') are considered. Case(a'): Let $x \in \mathbb{R}^n$. Put $\alpha = \tilde{s}(x)$. If $\alpha = 0$, then $x \preccurlyeq_K x$ and $\tilde{s}(x) = 0 \le \tilde{r}(x)$. While, if $\alpha > 0$, then $x \in \tilde{s}_{\alpha}$. Since $\tilde{s}_{\alpha} \preccurlyeq_K \tilde{r}_{\alpha}$, there exists $y \in \tilde{r}_{\alpha}$ such that $x \preccurlyeq_K y$. And we have $\tilde{s}(x) = \alpha \le \tilde{r}(y)$. Case(b'): Let $y \in \mathbb{R}^n$. Put $\alpha = \tilde{r}(y)$. If $\alpha = 0$, then $x \preccurlyeq_K x$ and $\tilde{s}(x) \ge 0 = \tilde{r}(y)$. While, if $\alpha > 0$, then $y \in \tilde{r}_{\alpha}$. Since $\tilde{s}_{\alpha} \preccurlyeq_K \tilde{r}_{\alpha}$, there exists $x \in \tilde{s}_{\alpha}$ such that $x \preccurlyeq_K y$. And we have $\tilde{s}(x) \ge \alpha = \tilde{r}(y)$.

Therefore we get $\tilde{s} \preccurlyeq_K \tilde{r}$ on $\mathcal{F}(\mathbb{R}^n)$ from the above Case (a') and (b'). Thus we obtain this lemma. Q.E.D.

Define the dual cone of a cone K by

$$K^+ := \{ a \in \mathbb{R}^n \mid a \cdot x \ge 0 \text{ for all } x \in K \},$$

where $x \cdot y$ denotes the inner product on \mathbb{R}^n for $x, y \in \mathbb{R}^n$. For a subset $A \subset \mathbb{R}^n$ and $a \in \mathbb{R}^n$, we define

$$(2.1) a \cdot A := \{a \cdot x \mid x \in A\} \ (\subset \mathbb{R}).$$

The equation (2.1) means the projection of A on the extended line of the vector a if $a \cdot a = 1$. It is trivial that $a \cdot A \in \mathcal{C}(\mathbb{R})$ if $A \in \mathcal{C}(\mathbb{R}^n)$ and $a \in \mathbb{R}^n$.

Lemma 2.4. Let $A, B \in \mathcal{C}(\mathbb{R}^n)$. $A \preceq_K B$ on $\mathcal{C}(\mathbb{R}^n)$ if and only if $a \cdot A \preceq_1 a \cdot B$ on $\mathcal{C}(\mathbb{R})$ for all $a \in K^+$, where \preceq_1 is the natural order on $\mathcal{C}(\mathbb{R})$.

Proof. Suppose $A \preceq_K B$ on $\mathcal{C}(\mathbb{R}^n)$. Consider the two cases (a) and (b). Case(a): For any $a \cdot x \in a \cdot A$, there exists $y \in B$ such that $x \preceq_K y$. Then $y - x \in K$. If $a \in K^+$, then $a \cdot (y - x) \geq 0$ and i.e. $a \cdot x \leq a \cdot y$. Case(b): For any $a \cdot y \in a \cdot B$, there exists $x \in A$ such that $x \preceq_K y$. Then $y - x \in K$. If $a \in K^+$, then $a \cdot (y - x) \geq 0$ and i.e. $a \cdot x \leq a \cdot y$. From the above cases (a) and (b), we have that $a \cdot A \preceq_1 a \cdot B$.

On the other hand, to prove the inverse statement, we assume that $A \preccurlyeq_K B$ on $\mathcal{C}(\mathbb{R}^n)$ does not hold. Then we have the following two cases (i) and (ii). Case(i): There exists $x \in A$ such that $y - x \notin K$ for all $y \in B$. Then $B \cap (x + K) = \emptyset$. Since B and x + K are closed convex, by the separation theorem there exists $a \in \mathbb{R}$ $(a \neq 0)$ such that $a \cdot y < a \cdot x + a \cdot z$ for all $y \in B$ and all $z \in K$. Hence we suppose that there exists $z \in K$ such that $a \cdot z \geq 0$. Then $\lambda z \in K$ for all $\lambda \geq 0$ since K is a cone, and so we have $a \cdot x + a \cdot \lambda z = a \cdot x + \lambda a \cdot z \to -\infty$ as $\lambda \to \infty$. This contradicts $a \cdot y < a \cdot x + a \cdot z$. Therefore we obtain $a \cdot z \geq 0$ for all $z \in K$. Especially taking $z = 0 \in K$, we get $a \cdot y < a \cdot x$ for all $y \in B$. This contradicts $a \cdot A \preccurlyeq_1 a \cdot B$. Case(ii): There exists $y \in B$ such that $y - x \notin K$ for all $x \in A$. Then we derive the contradiction in a similar way to the case (i).

Therefore the inverse statement holds from the results of the above (i) and (ii). The proof of this lemma is completed. Q.E.D.

For $a \in \mathbb{R}^n$ and $\tilde{s} \in \mathcal{F}(\mathbb{R}^n)$, we define a fuzzy number $a \cdot \tilde{s} \in \mathcal{F}(\mathbb{R})$ by

(2.2)
$$a \cdot \tilde{s}(x) := \sup_{\alpha \in [0,1]} \min\{\alpha, 1_{a \cdot \tilde{s}_{\alpha}}(x)\}, \quad x \in \mathbb{R}.$$

where $1_D(\cdot)$ is the classical indicator function of a closed interval $D \in \mathcal{C}(\mathbb{R})$.

We define a partial relation \preccurlyeq_M on $\mathcal{F}(\mathbb{R})$ as follows ([8]): For $\tilde{s}, \tilde{r} \in \mathcal{F}(\mathbb{R}^n)$, $\tilde{s} \preccurlyeq_M \tilde{r}$ means that $\tilde{s}_{\alpha} \preccurlyeq_1 \tilde{r}_{\alpha}$ for all $\alpha \in [0,1]$.

The following theorem gives the correspondence between the pseudo-order \leq_K on $\mathcal{F}(\mathbb{R}^n)$ and the fuzzy max order \leq_M on $\mathcal{F}(\mathbb{R})$.

Theorem 2.1. For $\tilde{s}, \tilde{r} \in \mathcal{F}(\mathbb{R}^n)$, $\tilde{s} \preceq_K \tilde{r}$ iff $a \cdot \tilde{s} \preceq_M a \cdot \tilde{r}$ for all $a \in K^+$.

Proof. From Lemmas 2.3 and 2.4, $\tilde{s} \preccurlyeq_K \tilde{r}$ iff $a \cdot \tilde{s}_{\alpha} \preccurlyeq_1 a \cdot \tilde{r}_{\alpha}$ for all for all $a \in K^+$ and $\alpha \in (0,1]$. Is equivalent to $a \cdot \tilde{s} \preccurlyeq_M a \cdot \tilde{r}$ for all $a \in K^+$. Q.E.D.

For $\{\tilde{s}_k\}_{k=1}^{\infty} \subset \mathcal{F}(\mathbb{R}^n)$ and $\tilde{s} \in \mathcal{F}(\mathbb{R}^n)$, $\lim_{k \to \infty} \tilde{s}_k = \tilde{s}$ means that $\sup_{\alpha \in [0,1]} \rho(\tilde{s}_{k,\alpha}, \tilde{s}_{\alpha}) \to 0$ $(k \to \infty)$, where $\tilde{s}_{k,\alpha}$ is the α -cut of \tilde{s}_k and ρ is the Hausdorff metric on $\mathcal{C}(\mathbb{R}^n)$.

Lemma 2.5. Let $\{\tilde{s}_k\}_{k=1}^{\infty} \subset \mathcal{F}(\mathbb{R})$ and $\tilde{s} \in \mathcal{F}(\mathbb{R})$ such that $\tilde{s}_k \preceq_M \tilde{s}_{k+1}$ $(k \geq 1)$ and $\lim_{k \to \infty} \tilde{s}_k = \tilde{s}$. Then $\tilde{s}_1 \preceq_M \tilde{s}$.

Proof. Trivial. Q.E.D.

Theorem 2.2. Let $\{\tilde{s}_k\}_{k=1}^{\infty} \subset \mathcal{F}(\mathbb{R}^n)$ and $\tilde{s} \in \mathcal{F}(\mathbb{R}^n)$ such that $\tilde{s}_k \preccurlyeq_K \tilde{s}_{k+1}$ $(k \geq 1)$ and $\lim_{k \to \infty} \tilde{s}_k = \tilde{s}$. Then $\tilde{s}_1 \preccurlyeq_K \tilde{s}$.

Proof. From Theorem 2.1, for all $a \in K^+$ we have $a \cdot \tilde{s}_k \preccurlyeq_M a \cdot \tilde{s}_{k+1}$ $(k \ge 1)$ and $\lim_{k \to \infty} a \cdot \tilde{s}_k = a \cdot \tilde{s}$. By Lemma 2.3, $a \cdot \tilde{s}_1 \preccurlyeq_M a \cdot \tilde{s}$ all $a \in K^+$. From Theorem 2.1, $\tilde{s}_1 \preccurlyeq_K \tilde{s}$. Q.E.D.

Remark. Let the map $g:[0,1] \to \mathcal{F}(\mathbb{R}^n)$ be continuous. A point x_0 is said to be efficient if $x_0 \in [0,1]$ and $g(x_0) \preccurlyeq_K g(x)$ for some $x \in [0,1]$ implies $g(x) = g(x_0)$. Then, by applying the same idea as in Lemma 3.2 of Furukawa [2], we observe that there exists at least one efficient point in [0,1]. In fact, considering, if necessary, a partial order \preccurlyeq_K on the class of the quotient sets with respect to the equivalence relation \sim_K defined by $\tilde{s} \sim_K \tilde{r}$ iff $\tilde{s} \preccurlyeq_K \tilde{r}$ and $\tilde{r} \preccurlyeq_K \tilde{s}$, we can assume that \preccurlyeq_K is a partial order on $\mathcal{F}(\mathbb{R}^n)$. By theorem 2.2 and the continuity of g, $\{g(x) \mid x \in [0,1]\}$ can be proved to be an inductively ordered set. So, by Zorn's lemma $\{g(x) \mid x \in [0,1]\}$ has an efficient element.

3. Further results

In this section, we investigate a pseudo-order \leq_K on $\mathcal{F}_r(\mathbb{R}^n)$ for a polyhedral cone K with $K^+ \subset \mathbb{R}^n$. To this end, we need the following lemma.

Lemma 3.1. Let $a, b \in \mathbb{R}^n_+$ and $A \in \mathcal{C}_r(\mathbb{R}^n)$. Then for any scalars $\lambda_1, \lambda_2 \geq 0$, it holds

$$(3.1) \qquad (\lambda_1 a + \lambda_2 b) \cdot A = \lambda_1 (a \cdot A) + \lambda_2 (b \cdot A),$$

where the arithmetic in (3.1) is defined in (2.1).

Proof. Let $\lambda_1 a \cdot x + \lambda_2 b \cdot y \in \lambda_1(a \cdot A) + \lambda_2(b \cdot B)$ with $x, y \in A$. It suffices to show that $\lambda_1 a \cdot x + \lambda_2 b \cdot b \in (\lambda_1 a + \lambda_2 b) \cdot A$. Define $z = (z_1, z_2, \dots, z_n)$ by

$$z_i = (\lambda_1 a_i x_i + \lambda_2 b_i y_i) / (\lambda_1 a_i + \lambda_2 b_i) \quad \text{if}(\lambda_1 a_i + \lambda_2 b_i) > 0$$

= x_i \quad \text{if}(\lambda_1 a_i + \lambda_2 b_i) = 0 \quad (i = 1, 2, \cdots, n)

Then, clearly $(\lambda_1 a + \lambda_2 b) \cdot z = \lambda_1 a \cdot x + \lambda_2 b \cdot y$. Since $A \in \mathcal{C}_r(\mathbb{R}^n), z \in A$, so that $\lambda_1 a \cdot x + \lambda_2 b \cdot y = (\lambda_1 a + \lambda_2 b) \cdot A$. Q.E.D.

Henceforth, we assume that K is a polyhedral convex cone with $K^+ \subset \mathbb{R}^n$, i.e., there exist vectors $b^i \in \mathbb{R}^n_+ (i = 1, 2, \dots, m)$ such that

$$K = \{x \in \mathbb{R}^n \mid b^i \cdot x \le 0 \text{ for all } i = 1, 2, \dots, m\}.$$

Then, it is well-known (c.f. [9]) that K^+ is expressed as

$$K^{+} = \{x \in \mathbb{R}^{n} \mid x = \sum_{i=1}^{m} \lambda_{i} b_{i}, \ \lambda_{i} \geq 0 \ (i = 1, 2, \dots, m)\}.$$

The above dual cone K^+ is denoted simply by

$$K^{+} = \text{conv}\{b^{1}, b^{2}, \cdots, b^{m}\}.$$

The pseudo-order \preccurlyeq_K on $\mathcal{C}_r(\mathbb{R}^n)$ is characterized in the following

Corollary 3.1. Let $K^+ = \text{conv}\{b^1, b^2, \dots, b^m\}$ with $b^i \in \mathbb{R}^n_+$. Then, for $A, B \in \mathcal{C}_r(\mathbb{R}^n)$, $A \leq_k B$ if and only if $b^i \cdot A \leq_1 b^i \cdot B$ for all $i = 1, 2, \dots, m$, where \leq_1 is a pseudo-order on $\mathcal{C}_r(\mathbb{R})$.

Proof. We assume that $b^i \cdot A \leq_1 b^i \cdot B$ for all $i = 1, 2, \dots, m$. For any $a \in K^+$, there exists $\lambda_i \geq 0$ with $a = \sum_{i=1}^m \lambda_i b^i$. From Lemma 3.1 we have:

$$a \cdot A = \sum_{i=1}^{m} \lambda_i (b^i \cdot A) \preccurlyeq_1 = \sum_{i=1}^{m} \lambda_i (b^i \cdot B) = a \cdot B.$$

Thus, by Lemma 2.4, $A \leq_K B$ follows. By applying Lemma 2.4 again, the 'only if' part of Corollary holds. Q.E.D.

Lemma 3.2. Let $a, b \in \mathbb{R}^n_+$ and $\tilde{s} \in \mathcal{F}_r(\mathbb{R}^n)$. Then, for any $\lambda_1, \lambda_2 \geq 0$,

(3.2)
$$(\lambda_1 a + \lambda_2 b) \cdot \tilde{s} = \lambda_1 (a \cdot \tilde{s}) + \lambda_2 (b \cdot \tilde{s}),$$

where the arithmetic in (3.2) are given in (1.1), (1.2) and (2.2).

Proof. For any $\alpha \in [0,1]$, it follows from the definition and Lemma 3.1 that

$$[(\lambda_1 a + \lambda_2 b) \cdot \tilde{s}]_{\alpha} = (\lambda_1 a + \lambda_2 b) \cdot \tilde{s}_{\alpha} = \lambda_1 (a \cdot \tilde{s}_{\alpha}) + \lambda_2 (b \cdot \tilde{s}_{\alpha})$$
$$= \lambda_1 (a \cdot \tilde{s})_{\alpha} + \lambda_2 (b \cdot \tilde{s})_{\alpha} = [\lambda_1 (a \cdot \tilde{s}) + \lambda_2 (b \cdot \tilde{s})]_{\alpha}.$$

The last equality follows from (1.3). The above shows that (3.3) holds. Q.E.D

The main results in this section are given in the following.

Theorem 3.1. Let $K^+ = \text{conv}\{b^1, b^2, \dots, b^m\}$ with $b^i \in \mathbb{R}^n$. Then, for $\tilde{s}, \tilde{r} \in \mathcal{F}_r(\mathbb{R}^n)$,

$$\tilde{s} \preccurlyeq_K \tilde{r} \quad \text{if and only iff} \quad b^i \cdot \tilde{s} \preccurlyeq_M b^i \cdot \tilde{r} \text{ for } i = 1, 2, \cdots, m.$$

Proof. It suffices to prove the 'if' part of Theorem 3.1. For any $a \in K^+$, there exists $\lambda_i \geq 0$ with $a = \sum_{i=1}^m \lambda_i b^i$. Applying Lemma 3.2, we have

$$a \cdot \tilde{s} = \sum_{i=1}^{m} \lambda_i (b^i \cdot \tilde{s}) \preccurlyeq_M \sum_{i=1}^{m} \lambda_i (b^i \cdot \tilde{r}) = a \cdot \tilde{r},$$

From Theorem 2.1, $\tilde{s} \preccurlyeq_k \tilde{r}$ follows. Q.E.D.

Figure 1: $\tilde{v} = \sup(\tilde{s}, \tilde{r})$

When $K = \mathbb{R}^n$, the pseudo-order \leq_K on $\mathcal{F}_r(\mathbb{R}^n)$ will be simply written by \leq_n . Obviously, \leq_1 and \leq_M are the same.

Congxin and Cong [1] described the structure of the fuzzy number lattice $(\mathcal{F}_r(\mathbb{R}), \preceq_1)$. When $K = \mathbb{R}^n$, $K^+ = \mathbb{R}^n$ and $K^+ = \text{conv}\{e^1, e^2, \cdots, e^m\}$. So that, by Theorem 3.1, we see that for $\tilde{s}, \tilde{r} \in \mathcal{F}_r(\mathbb{R}^n)$, $\tilde{s} \preceq_n \tilde{r}$ means $e^i \tilde{s} \preceq_1 e^i \tilde{r}$ for all $i = 1, 2, \cdots, n$. Therefore, by applying the same method as [1], we can describe the structure of the fuzzy set lattice $(\mathcal{F}_r(\mathbb{R}^n), \preceq_n)$. Figure 1 illustrates $\sup(\tilde{s}, \tilde{r})$ for $\tilde{s}, \tilde{r} \in \mathcal{F}_r(\mathbb{R}^2)$.

References

- [1] W.Congxin and C.Cong, "The supremum and infimum of the set of fuzzy numbers and its application," J. Math. Anal. Appl. 210 (1997) 499-511.
- [2] N.Furukawa, "Characterization of optimal policies in vector-valued Markovian decision processes," Math. Oper. Research. 5 (1980) 271-279.
- [3] N.Furukawa, "Parametric orders on fuzzy numbers and their roles in fuzzy optimization problems," *Optimization* **40** (1997) 171-192.
- [4] M.Kurano, M.Yasuda, J.Nakagami and Y.Yoshida, "Markov-type fuzzy decision processes with a discounted reward on a closed interval," *European Journal of Operational Research* **92** (1996) 649-662.
- [5] D.Kuroiwa, T.Tanaka and T.X.D.Ha, "On cone convexity of set-valued maps," Nonlinear Analysis, Theory & Applications 30 (1997) 1487-1496.
- [6] D.Kuroiwa, "The natural criteria in set-valued optimization," RIMS kokyuroku 1031 (1998) 85-90.
- [7] V.Novák, Fuzzy Sets and Their Applications (Adam Hilder, Bristol-Boston, 1989).
- [8] J.Ramík and J.Řimánek, "Inequality relation between fuzzy numbers and its use in fuzzy optimization," Fuzzy Sets and Systems 16 (1985) 123-138.
- [9] J.Stoer and C.Witzgall, Convexity and Optimization in Finite Dimensions I (Springer-Verlag, Berlin and New York, 1970).
- [10] L.A.Zadeh, "Fuzzy sets," Inform. and Control 8 (1965) 338-353.
- [11] K.Zhang and K.Hirota, "On fuzzy number lattice $(\tilde{R}, \preccurlyeq)$," Fuzzy sets and Systems **92** (1997) 113-122.