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Abstract

The aim of this paper is to define an order on a class of fuzzy sets which is
extending a pseudo-order for fuzzy numbers, and its characterization and several
relations of the previous results are discussed. The idea comes from a set-relation
in n-dimensional Euclid space given by Kuroiwa, Tanaka and Ha (1997). We induce
the order of a class of fuzzy sets by a closed convex cone and characterize it by using
the projection into the dual cone. Especially, a structure of the lattice is described
for the class of rectangle-type fuzzy sets.
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1. Introduction and notations

In the theory of optimization it is a quite important problem how to induce a natural
definition of order on the class of considering systems. Since it isn’t a simple problem
about a order on the fuzzy set theory, many auther tried to consider its natural extension.

Ramik and Rimanek [8] has introduced a partial order on the set of fuzzy numbers,
called the fuzzy max order. The present authors also tried to optimize the dynamic fuzzy
system [4]. Also there are various types of order relations on the class of fuzzy numbers.
See [3], [11] and their references. Congxin and Cong [1] have descrived the fuzzy number
lattice.

This paper is to extend the fuzzy max order of fuzzy numbers to a class of fuzzy sets
defined on R™. The pseudo order for fuzzy sets is induced by a closed convex cone K in R"
and characterized by the projection in the dual cone K*. Also, the structure of a lattice
is discussed for the class of rectangle-type fuzzy sets. By our works we can imagine the
much wider application to the fuzzy optimization problem. Our idea of the motivation
originates from a set-relation in R™ given by Kuroiwa, Tanaka and Ha [5] and Kuroiwa [6],
in which various types of set-relations in R™ are used in set-valued optimizations.

In the remainder of this section, we will give some notations and review a vector
ordering of R™ by a convex cone. Let R be the set of all real numbers and R™ an n-
dimensional Euclidean space. We write fuzzy sets on R™ by their membership functions
5:R™ — [0,1] (see Novék [7] and Zadeh [10}). The a-cut (a € [0, 1]) of the fuzzy set §
on R™ is defined as

5, ={z€R"|3(z)>a} (a>0) and 35 :=cl{z € R"|5(z) >0},
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where cl denotes the closure of the set. A fuzzy set 3 is called convex if
s(Az+(1—-Ay) 23(x) A3(y) =,y eR", Ae(0,1],

where ¢ A b = min{a,b}. Note that § is convex iff the a-cut 3, is a convex set for all
a € [0,1]. Let F(R™) be the set of all convex fuzzy sets whose membership functions
§ : R* — [0,1] are upper-semicontinuous and normal (sup,cg. $(z) = 1) and have a
compact support. When the one-dimensional case n = 1, the fuzzy sets are called fuzzy
numbers and F(R) denotes the set of all fuzzy numbers.

Let C(R") be the set of all compact convex subsets of R™, and C,(R™) be the set of all
rectangles in R*. For 5§ € F(R"), we have 5, € C(R") (a € [0,1]). We write a rectangle
in C.(R™) by v '

[:E,y] - [xla yl] X [w2’y2] Xoeee [mnayn]
for z = (21,22, - ,2n),y = (Y1, Y2, ,¥Yn) € R* with z; <y; (1 = 1,2,--- ,n). For the
case of n = 1, C(R) = C.(R) and it denotes the set of all bounded closed intervals. When
5 € F(R") satisfies 3, € C,(R") for all o € [0,1], § is called a rectangle-type. We denote
by F.(R") the set of all rectangle-type fuzzy sets on R™. Obviously F,.(R) = F(R).
The definitions of addition and scalar multlphcatlon on F(R) are as follows: For
m,n € F(R) and A > 1,

(1.1) : (m+7)(z) = sup {m(z1) A fi(z9)},

z1,22€R; r14zo=xz

(1.2) (M) () = { ZE}‘”({;;) 170 @em),

where I3(-) is an indicator. By using set operations A+ B:={z+y |z € A,y € B} and
AA = {Az | z € A} for any non-empty sets A, B C R, the following holds immediately.

(1.3) (M4 7)q =My +0y and (M), =M, (a€]0,1]).

Let K be a non-empty cone of R”. Using this K, we can define a pseudo-order relation
<k onRby 2y iff y—2 € K. Let R} be the subset of entrywise non-negative elements
in R". When K = R%}, the order < will be denoted by <, and z<,y means that z; < y;
foralls =1,2,--- ,n, where z = (21,22, -+ ,2,) and y = (y1,¥%2, - ,¥n) € R™.

In Section 2, we will introduce a pseudo-order relation on F(R™) which is characterized
by the scaralization technique. In section 3, the lattice structure is discussed for the class
of rectangle-type fuzzy sets.

2. A pseudo-order on F(R")

First we introduce a binary relation on C(R™), by which a pseudo-order on F(R™) is given.
Henceforth we assume that the convex cone K C R is given.

We define a binary relation <z on C(R™): For A,B € C(R"), AXxB means the
following (C.a) and (C.b) (c.f. [5], [6]):
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(C.a) For any = € A, there exists y € B such that z<xy.

(C.b) For any y € B, there exists z € A such that z<ky.

Lemma 2.1. The relation < is a pseudo-order on C(R").

Proof. It is trivial that A< A for A € C(R"). Let A, B,C € C(R") such that AxkB
and B<xC. We will check A<xC by two cases (c.a) and (C.b). Case(C.a): Since Axx B
and B<C, for any z € A there exists y € B such that r<xy and there exists z € C such
that y<xz. Since <y is a pseudo-order on R, we have z<gz. Therefore it holds that
for any z € A there exists z € C such that z<z. Case(C.b):Since Axx B and BXkC,
for any z € C there exists y € B such that y<xz and there exists x € A such that zxgy.
Since <y is a pseudo-order on R", we have <k z. Therefore it holds that for any z € C
there exists z € A such that k2.
From the above (a) and (b), we obtain A<xC. Thus the lemma holds.  Q.E.D.

When K = R7%, the relation g on C(R") will be written simply by <, and for
[z,9],[2',¥'] € C,(R™), [2,y]=a[2", '] means z<,2" and y<,y'.

Next, we introduce a binary relation <k on F(R"): Let 3,7 € F(R"). The relation
35X k7 means the following (F.a) and (F.b):

(F.a) For any = € R™, there exists y € R™ such that z<xky and 3(z) < 7(y).

(F.b) For any y € R", there exists z € R" such that z<xy and 3(z) > 7(y).

Lemma 2.2. The relation < is a pseudo-order on F(R™).

Proof. It is trivial that §<x3 for § € F(R"). Let 5,7, p € F(R™) such that §<x7 and
7F<gp. We will check 55kp by two cases (F.a) and (F.b). Case(F.a):Since $xx7 and
F<xp, for any z € R" there exists y € R™ such that z<gy and 3(z) < 7#(y), and there
exists z € R” such that y<xz and 7(y) < p(z). Since <k is a pseudo-order on R", we
have z<gz and §(z) < p(z). Therefore it holds that for any x € R" there exists z € R"
such that <k z and 3(z) < p(z). Case(F.b) Since k7 and F<gp, for any z € R" there
exists y € R™ such that y<xz and 3(z) > 7(y), and there exists 2 € R" such that z<xy
and 5(z) > #(y). Since <k is a pseudo-order on R", we have z<xxz. Therefore it holds
that for any z € R™ there exists z € R such that 2<gz and 3(x) > p(2).
From the above (a) and (b), we obtain §<kp. Thus the lemma holds.  Q.E.D.

The following lemma implies the correspondence between the pseudo-order on F (R™)
for fuzzy sets and the pseudo-order on C(R") for the a-cuts.

Lemma 2.3. Let 5,7 € F(R"). §<x7 on F(R") if and only if 3,<k7a on C(R") for all
a € (0,1].
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Proof. Let 5,7 € F(R") and a € (0,1]. Suppose §5x7 on F(R"). Then, Two cases (a)
and (b) are considered. Case(a): Let z € 3,. Since 357, there exists y € R™ such that
z<xy and o < 3(z) < 7(y). Namely y € 7,. Case(b): Let y € #,. Since k¥, there
exists € R™ such that zxxy and 5(z) > 7(y) > . Namely « € 3,.

Therefore we get 5,<k7, on C(R") for all a € (0,1] from the above (a) and (b).

On the other hand, suppose 3,< k7, on C(R"™) for all a € (0,1]. Then, Two cases (a’)
and (b’) are considered. Case(a’): Let z € R". Put o = 3(z). If o = 0, then z<xz and
3(z) = 0 < 7(z). While, if & > 0, then = € 3,. Since §,<kT,, there exists y € 7, such
that z<xy. And we have 3(z) = o < 7(y). Case(b’): Let y € R*. Put a = #(y). If
o = 0, then z<kz and 3(z) > 0 = 7(y). While, if @ > 0, then y € 7,. Since 3,xkTa,
there exists z € 3, such that z<xxy. And we have 3(z) > a = 7(y).

Therefore we get §<5x7 on F(R™) from the above Case (a’) and (b’). Thus we obtain
this lemma. Q.E.D. ' ‘

Define the dual cone of a cone K by
Kt:={a€eR"|a-z>0forall z € K},

where z - y denotes the inner product on R” for z,y € R". For a subset A C R™ and
a € R™, we define

(2.1) a-A:={a-z|z€ A} (CR).

The equation (2.1) means the projection of A on the extended line of the vector a if
a-a=1. It is trivial that a - A € C(R) if A € C(R") and a € R".

Lemma 2.4. Let A, B € C(R*). Ak B on C(R") if and only if a- A<ya- B on C(R) for
all a € K+, where < is the natural order on C(R).

Proof. Suppose A<y B on C(R"). Consider the two cases (a) and (b). Case(a): For any
a-z € a- A, there exists y € B such that zxxy. Then y —z € K. If a € K*, then
a-(y—z)>0andie a-z<a-y. Case(b): Forany a-y € a- B, there exists x € A such
that z<gy. Theny —z € K. Ifa€ K*,thena-(y—z) >0 andie. a -z <a-y. From
the above cases (a) and (b), we have that a - A<a - B.

On the other hand, to prove the inverse statement, we assume that A< B on C(R")
does not hold. Then we have the following two cases (i) and (ii). Case(i): There exists
z € Asuch that y —2 ¢ K for all y € B. Then BN (z + K) = 0. Since B and
z + K are closed convex, by the separation theorem there exists a € R (a # 0) such that
a-y<a-r+a-zforalye Bandall z€ K. Hence we suppose that there exists
z € K such that a-z > 0. Then Az € K for all \ > 0 since K is a cone, and so we have
a-z+a-dz=a-z+Xa-z— —oo as A\ = oo. This contradicts a-y < a-z+a-z. Therefore
we obtain a - z > 0 for all z € K. Especially taking z =0 € K, we get a-y < a - = for all
y € B. This contradicts a - A<;a - B. Case(ii): There exists y € B such that y —z ¢ K
for all z € A. Then we derive the contradiction in a similar way to the case (i).
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Therefore the inverse statement holds from the results of the above (i) and (ii). The
proof of this lemma is completed. Q.E.D.

For a € R" and § € F(R"), we define a fuzzy number a - § € F(R) by

(2.2) a-3(z):= sup min{e,1l,5.(z)}, zeR.
a€l0,1]
where 1p(-) is the classical indicator function of a closed interval D € C (R).
We define a partial relation <3 on F(R) as follows ( [8]): For 5,7 € F(R"), 5,7
means that §,<,7, for alla € [0, 1].
The following theorem gives the correspondence between the pseudo-order <x on
F(R™) and the fuzzy max order <3 on F(R).

Theorem 2.1. For 3,7 € F(R"), 37 iff a-3<pya -7 foralla e K+.

Proof. From Lemmas 2.3 and 2.4, 3<k7 iff a - 5,<ya - 7, for all for all « € K+ and
a € (0,1]. Is equivalent to a - 3yya-7 foralla € Kt. Q.E.D.

For {3:}32; C F(R*) and § € F(R"), klim 5t = 5 means that sup p(3a,3,) — 0
—+o0 a€gl0,1]
(k — o0), where 3k, is the a-cut of 3; and p is the Hausdorff metric on C(R™).

Lemma 2.5. Let {3}, C F(R) and § € F(R) such that 3x<pdps1 (k > 1) and
limgy0o Sk = 8. Then §;</3.

Proof. Trivial. Q.E.D.

Theorem 2.2. Let {5;:}32, C F(R") and § € F(R"™) such that 5;<k3k41 (k > 1) and
limg oo 8k = §. Then 3;<XgS.

Proof. From Theorem 2.1, for all « € K+ we have a- 8,0+ 3k41 (k> 1) and limy_yo0 @
Sk = a-5. By Lemma 2.3, a-5;xXpa 3 all a € K*. From Theorem 2.1, §,<5x35. Q.E.D.

Remark. Let the map g : [0,1] — F(R") be continuous. A point z, is said to be efficient
if zo € [0,1] and g(zo)<kg(z) for some z € [0, 1] implies g(z) = g(z,). Then, by applying
the same idea as in Lemma 3.2 of Furukawa [2], we observe that there exists at least one
efficient point in [0, 1]. In fact, considering, if necessary, a partial order <j on the class of
the quotient sets with respect to the equivalence relation ~x defined by 5 ~x 7 iff S5 7
and 7 g3, we can assume that g is a partial order on F(R"). By theorem 2.2 and the
continuity of g, {g(z) | z € [0,1]} can be proved to be an inductively ordered set. So, by
Zorn’s lemma {g(z) | z € [0,1]} has an efficient element.

3. Further results

In this section, we investigate a pseudo-order < on F,.(R") for a polyhedral cone K with
K+ C R™. To this end, we need the following lemma.
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Lemma 3.1. Let a,b € R} and A € C,(R"). Then for any scalars A;, A\; > 0, it holds
(31) (Ala-}’)\zb) A= )\I(G'A) +A2(b'14),
where the arithmetic in (3.1) is defined in (2.1).

Proof. Let Mja-z+ Xb-y € Ai(a-A)+ A2(b- B) with z,y € A. It suffices to show that
Aa-z+ XAb-b € (Aa+ Ab) - A. Define z = (2,29, -+, 2,) by
zi = (Maiz; + A2biyi)/(Ma; + Aab;)  if(Ara; + A2bi) >0
=x; if()\lai+)\2bi) =0 (Z= 1,2,"' ,n)

Then, clearly (Aja + Ab) -z = Aa -z 4+ Ab-y. Since A € C.(R"),z € A, so that
AMa-z 4+ Xb-y=(Aa+Ab)- A, QE.D.

Henceforth, we assume that K is a polyhedral convex cone with K+ C R™, i.e., there
exist vectors ' € R} (i =1,2,--- ,m) such that

K={zeR"|b-z<0forall :=1,2,---,m}.

Then, it is well-known (c.f. [9]) that K™ is expressed as

K+:{:c€R“|w=Z)\ibi, A>0(=1,2,---,m)}.

=1
The above dual cone K* is denoted simply by
K* = conv{b', 5%, --- ,b"}.
The pseudo-order < 0n~C,.(R”) is characterized in the following.

Corollary 3.1. Let K+ = conv{d',b%,--- ,b™} with b € R%. Then, for 4, B € C.(R"),
A< Bifand only if b' - Ag,b'- Bforall i = 1,2,--- ,m, where <, is a pseudo-order on
C.(R).

Proof. We assume that b - A<,b'- B for all ¢ = 1,2,--- ,m. For any a € K™, there
exists A; > 0 witha =3, ;0. From Lemma 3.1 we have:

m m

a-A=) Nb-A) <, =) N -B)=a-B.

=1 1=1

Thus, by Lemma 2.4, A < B follows. By applying Lemma 2.4 again, the ‘only if’ part
of Corollary holds. Q.E.D.

Lemma 3.2. Let a,b € R} and 5 € F(R"). Then, for any A;,A; > 0,

(3.2) (Mia+ Agb) - 5= Ay(a-3) + ho(b- 3),
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where the arithmetic in (3.2) are given in (1.1), (1.2) and (2.2).

Proof. For any o € [0,1], it followslfrom the definition and Lemma 3.1 that
[(Ara 4+ A2b) - 8]la = (M@ + A2b) - 54 = Ai(a - 8a) + A2(b- 34)
=M(a- 8o+ A2(b:8)o = [M(a-3) + Ag(b- 3]0
The last equality follows from (1.3). The above shows that (3.3) holds. Q.E.D.
The main results in this section are given in the following.
Theorem 3.1. Let KT = conv{b!,d?,--- ,b™} with b € R". Then, for 5,7 € F(R"),
i<k 7 ifandonlyiff b -§<p b -Ffor i=1,2,-- ,m. |

Proof. It suffices to prove the ‘if’ part of Theorem 3.1. For any a € K*, there exists
Ai >0 with a = 37" \;b'. Applying Lemma 3.2, we have

m m

a 5= Nb-3) su Y N F)=a-F

=1 =1

From Theorem 2.1, 3§ X 7 follows. Q.E.D.

Figure 1: ¢ = sup(§,7)

When K = R”, the pseudo-order g on F,(R") will be simply written by <,. Obvi-
ously, <; and <3 are the same.
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Congxin and Cong [1] described the structure of the fuzzy number lattice (F,.(R), <;).

When K = R*, K* = R" and K+ = conv{el,;e?,--: ,e™}. So that, by Theorem 3.1,
we see that for 5,7 € F,(R"), §<,,7 means €'3x;€e'f for all : = 1,2,--- ,n. Therefore, by
applying the same method as [1], we can describe the structure of the fuzzy set lattice
(F-(R™), %,). Figure 1 illustrates sup(8,7) for 3,7 € F.(R?).
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