
On the activity level increasing rationality
condition in multichoice games

弘前大学理学部情報科学教室Dmitri A. Ayoshin1
弘前大学理工学部数理システム科学科田中環 (Tanaka Tamaki)2

Abstract.

Key words: multichoice game, Shapley value, core, totally convexity.

1 Introduction.
In [1] Hsiao and Raghavan introduced a class of multichoice cooperative games and found
for it the Shapley value using an axiomatic approach. Later, Nouweland [2] determined the
Shapley value for multichoice cooperative games following its probabilistic interpretation. It
is happened that these two methods lead to quite different values. We should also mention
the determination of the Shapley value $\mathrm{t}\mathrm{h}\dot{\mathrm{r}}$ough a potential function proposed by Calvo and
Santos [3]. In our paper while avoiding the problem of inconsistency of the Shapley value
between Hsiao-Raghavan and Nouweland, we consider a necessary and sufficient condition
for the Shapley value by Nouweland to be in the core of a multichoice cooperative game.

It is well known that in the class of usual cooperative games with the characteristic
function form the Shapley value is in the core if the characteristic function is either convex
([4]), average convex ([5].), or.totally convex .([6]).. $\cdot$ In the last paper it has been shown that
the class of totally convex $\mathrm{g}$.ames includes that of average convex games. We are interested in
conditions leading the $\mathrm{S}\mathrm{h}\mathrm{a}\mathrm{p},\mathrm{l}\mathrm{e}\mathrm{y}$ value to be in the core on the class of multichoice cooperative
games as well.

2 Multichoice cooperative game.
First of all, we describe the multichoice cooperative game (MCG) introduced in [1]. Let
$N=\{1,2, \ldots, n\}$ be the set of players, $M_{i}=\{0,1,2, \ldots, m_{i}\}$ the set of activity levels of
player $i$ for $i\in N$ , but we assume that $m_{i}=m$ for all $i\in N$ as considered in [1]. A coalition
in this game is denoted by a vector $s=$ $(s_{1}, \ldots , s_{n})$ , where for each $i\in N,$ $s_{i}\in M_{i}$ shows
activity of player $i$ in the coalition $s$ . If a player does not participate in the coalition, his
level of activity is zero. Hence, the (

$‘ \mathrm{e}\mathrm{m}\mathrm{p}\mathrm{t}\mathrm{y}$

” coalition is $0=(0, \ldots, 0)$ . We denote the set
of all feasible $\mathrm{c}o$alitions by $M$ , that is, $M=M_{1}\cross\cdots\cross M_{n}$ . Throughout this paper, a
coalition $s$ A $t=( \min\{s_{1}, t_{1}\}, \min\{S_{2}, t_{2}\}, \ldots, \min\{Sn’ tn\})$ is considered as the intersection
of coalitions $s$ and $t$ , and a coalition $s \vee t=(\max\{s_{1}, t_{1}\}, \max\{S_{2}, t_{2}\}, \ldots, \max\{Sn’ t\}n)$ is
admitted as the union of $s$ and $t$ . Within given notations a superadditive function $v:Marrow R^{1}$

with $v(\mathrm{O})=0$ is called a characteristic function of a MCG. We denote such MCG by $G(v, N)$ .
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The imputations of a MCG are presented by $(m+1)\cross n$ –dimensional matrices. Let
$I(v, N)$ be the set of all imputations in $G(v, N)$ , that is, $I(v, N)=\{\xi=\{\xi_{ij}\}|\Sigma_{j=0}^{s_{i}}\xi ij\geq$

$v((0, \ldots, 0, S_{i}, \mathrm{o}, \ldots, 0))\forall i\in N$ and $\forall s_{i}\in M_{i}$ , and $\Sigma_{i=1^{\sum^{m}\xi}}^{n}j=0ij=v((m, \ldots, m))\}$ . We

shall say that the set $C(v, N)=\{\xi\in I(v.’ N)|\Sigma_{i:s_{i}}\neq 0^{\Sigma_{j0}^{s}\xi_{ij}}=i\geq v(s)$ for all $s\in M\}$ is the
core of $G(v, N)$ .

3 The Shapley value.

In [2], the following procedure of the Shapley value construction was proposed. Suppose that
a given coalition $s\in M$ is formed $\mathrm{s}\mathrm{t}\mathrm{e}\mathrm{p}^{-}\mathrm{b}\mathrm{y}-\mathrm{s}\mathrm{t}\mathrm{e}\mathrm{p}$, starting from zero coalition $0=(0, \ldots, 0)$

and on every stage one of the players increases his level of activity by 1. So after $k(s)=$

$\sum_{i:s_{t}\neq 0}s_{i}$ steps the coalition $s$ will be created. Let $w=\{w_{1}, \ldots, w_{k(m)}\}$ be an order of the
coalition $m=\{m, \ldots, m\}$ construction, where $w_{t}$ is the activity level of some player on a
step $t$ of the procedure. We denote the set of steps when player $i$ increases own activity
level by $T_{i}$ . The order $w$ is called admissible if for each player $i\in N$ from $t’<t^{\prime/}$ , where $t’$ ,
$t^{\prime/}\in T_{i}$ , it follows that $w_{t’}<w_{t’’}$ . The total number of the admissible orders is

$\Omega(m)=\frac{(\Sigma_{i\in Ni}m)!}{\Pi_{i\in N}(m_{i}!)}=\frac{(mn)!}{(m!)^{n}}$ .

Further we will consider only admissible orders. Take an arbitrary coalition $s\in M$ and fix
player $l\in N,$ $s_{l}\neq 0$ . Suppose that by an order $w$ the given coalition $s$ is created after the
first $k(s)$ steps, with the player $l$ completing formation $s$ . The number of such orders is

$\Omega_{l}(s)=.\cdot\frac{(\sum i.(s|s\iota-1)_{i}\neq 0si)!}{\Pi_{i\cdot(s|-1}sl)_{i}\neq 0(s_{i}!)}\frac{(\Sigma_{i\in N}(m-Si))!}{\Pi_{i\in N}((m-S_{i})!)}$ ,

where $s|s_{l}-1=$ $(s_{1}, \ldots, S_{l1}-, sl-1, S_{l1}+’\ldots , s_{n})$ . It is admitted that $\Omega_{l}(s)=0$ if $s_{l}=0$ .
Nouweland [2] showed that $\phi=\{\phi_{ij}\}$ , where $i=1,$ $\ldots,$ $n,$ $j=0,$ $\ldots,$

$m$ , and

$\phi_{ij}=.\sum_{=s.s_{i}j}\frac{\Omega_{i}(s)}{\Omega(m)}[v(S)-v(s|s_{i^{-1}})]$ , (3.1)

is the Shapley value of $G(v, N)$ . If there is realized a coalition $s$ in the game $G(v, N)$ , then
the payoff of player $i$ equals $\phi_{i}(s)=\sum_{j=0}^{s_{i}}\phi ij$ . We call $\phi(s)=\Sigma_{i:S_{i}\neq}0\phi i(S)$ the payoff of the
coalition $s$ according the Shapley value $\phi$ .

Example. As an illustration of the Shapley value for multichoice game we consider a
modification of $‘(\mathrm{L}\mathrm{a}\mathrm{n}\mathrm{d}$-lord and farm laborers” example given in Vorobjev [7].

Suppose there are $n-1$ farm laborers (players $i=N\backslash \{1\}$ ) and a land-lord (player 1).
The land-lord engages farm laborers and derives the gathered harvest. The farm-laborers
work for the land-lord and cannot derive a benifit for themselves. We characterize their
wishing to work by the sets $M_{i}=\{0,1, \ldots, m_{i}\},$ $i\in N\backslash \{1\}$ . A time length may be one
of the simpliest interpretation of $m_{i}$ . In our example the farm-laborers can work with an
equal enforce, i.e., $m_{i}=m_{j}$ for any $i\neq j,$ $i,j\in N\backslash \{1\}$ . The land-lord does not work and
his activity have to be defined by two choices: to engage or not to engage. So that, $M_{1}$ is
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given by $\{0,1\}$ . Such relations between players is described by the following characteristic
function $v:\Pi_{iN}\in M_{i}arrow R^{1}$

$v(s)=\{$
$0$ , $s_{1}=0$ or $s_{i}=0\forall i\in N\backslash \{1\}$

$f(s)$ , $s_{1}=1$ and $\exists i\in N\backslash \{1\}:s_{i}\neq 0$
’

where real-valued function $f$ satisfies $f(s)\leq f(r)$ for $s\leq r,$ $s,$ $r \in M=\prod_{i\in N}M_{i}$ . Suppose
that for the land-lord it is important only final result and no matter who fulfills job, i.e., if
$\sum_{i\in N}s_{i}=\Sigma_{i\in N}r_{i}$ for $s,$ $r\in M$ , then $f(s)=f(r)$ . It will convinient to use the function $v_{t}$

determined by $v_{t}=v(s)$ , where $t= \sum_{i\in N}s_{i}$ . Within given conditions let’s find the payoff
of the land-lord if the profit is shared according with the Shapley value. By formular (3.1)
we have

$\phi_{11}=\sum^{)}m(n-1t=2+1S:\Sigma_{i\in N^{S}}\sum_{1i=t,S=1}.\frac{(\Sigma_{i\in N}(S|_{S1}1-)i)!(\Sigma i\in N(m_{i}-S_{i}))!}{(\Sigma_{i\in N}m_{i})!}$

$\frac{(\Pi_{i\in N}mi)!}{(\Pi_{i\in N}(S|S_{1^{-}}1)i)!(\prod i\in N(mi-S_{i}))!}v(s)$

After denoting

$(\Pi_{i\in N}m_{i})$ !
$s: \Sigma_{i\in N}s=\iota_{S}1=\sum_{i1},\overline{(\prod i\in N(s|_{S}1^{-}1)i)!(\prod i\in N(mi-si))!}^{-}-Q(t)$

we can rewrite

$\phi_{11}$ $=$ $m(n-1 \sum_{t=2}^{)}\frac{(t-1)!(m(n-1)+1-t)!}{(m(n-1)+1)!}+1Q(t)v^{t}$

$=m(n arrow 1)\sum_{t=2}^{+1}\frac{1}{t}(m(n-1)+1)C_{t}Q(t)vt$ .

By the symmetry, each farm-laborer $i\in N\backslash \{1\}$ gets payoff $\phi_{i}(1, m, \ldots, m)=\frac{f(m)-\phi 11}{n-1}$

if he works with the enforce $m$ . Now $\mathrm{o}\mathrm{n}_{\vee}$ the example of level $m$ and $m-1$ we discuss
the reasonability to work harder for a farm-laborer. We change the game such that $m_{i}=$

$m-1$ for $i\in N\backslash \{1\}$ . Let in the new game the payoff of the land-lord be $\phi_{11}^{m-1}$ and
the farm-laborer’s benifit be $\phi_{i}^{m-1}(1, m-1, \ldots, m-1),$ $i\in N\backslash \{1\}$ . It is easily seen
that $\phi_{11}\geq\phi_{11}^{m-1}$ . Therefore the land-lord is always interested for his workers to increase
productivity. In respect to the farm-laborers, in general, there may be function $f$ that
$\frac{f(m)-\phi 11-(f(m-1)-\phi^{m_{1^{-1}}}1)}{n-1}\leq 0$ . In this case the farm-laborers has no sense to move from the
activity $m-1$ to $m$ . Obviously, as $\mathrm{l}\mathrm{a}\mathrm{n}\mathrm{d}-10\backslash$rd as workers are stimulated to choose the level
$m$ , when the $\mathrm{S}\mathrm{h}.\mathrm{a}$pley value is in the core.

4 Total convexity.
Now we turn to the game $G(v, N)$ . and for every coalition $s\in M$ define subgame $G^{s}$ , with
the characteristic function $v^{s}$ being a restriction of $v$ on the set $M^{s}=\{t\in M|0\leq t_{i}\leq$
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$s_{i}$ for each $i\in N$ }. We omit the explicit description of the games $G^{s},$ $s\in M$ , because it
is very similar to the definition of the game $G(v, N)$ . Denote the Shapley value of $G^{s}$ by
$\phi^{s}=\{\phi_{ij}^{s}\},$ $i=1,$ $\ldots,$

$N,$ $j=0,$ $\ldots,$
$s_{i}$ . Now we find a condition for $\phi$ to be in $C(v, N)$ .

For the sake of comfortability we introduce functions $\delta_{i}(s)=v(s)-v(s|s_{i}-1),$ $s\in M$ ,
$s_{i}-1\geq 0,$ $i\in N$ . Let $t$ be an arbitrary given coalition in $M$ . From (3.1) we have

$\phi(t)$ $=$
$i. \cdot l_{i}\neq\sum_{0}\phi_{i}(t)$

$=$ $. \sum_{i.t_{i}\neq 0}\sum_{j=0}^{i}\phi tij$

$=$ $. \sum_{i.t_{i}\neq 0}\sum_{j=}t_{i}0.\sum_{S.S_{i}=j}\frac{\Omega_{i}(s)}{\Omega(m)}\delta i(S)$

$=$
$. \sum_{i.t_{i}\neq 0ss\wedge}\sum_{\leq:(t)tt}$.

$\frac{\Omega_{i}(s)}{\Omega(m)}\delta_{i}(S)$ .

(3.2)
Note that $t\leq m$ and hence

$S:(s \wedge t\sum_{i)i\leq t}\frac{\Omega_{i}(s)}{\Omega(m)}\geq.\sum_{\leq r\cdot rt}\frac{\Omega_{i}(r)}{\Omega(t)}$.

Hence, if

$. \sum_{i.t_{i}\neq 0S:(s\wedge}\sum_{t)i\leq ti}\frac{\Omega_{i}(s)}{\Omega(m)}(\delta_{i}(S)-\delta_{i}(S\wedge t))\geq 0$, (3.3)

then expression (3.2) is greater than or equal to

$i. \cdot\iota_{i}\neq\sum_{0}.\sum_{r\cdot r\leq t}\frac{\Omega_{i}(r)}{\Omega(t)}\delta i(r)=.\sum_{\neq i.li0}\sum_{j=0r}.\sum_{ri=j}\frac{\Omega_{i}(r)}{\Omega(t)}t_{i}.\delta_{i}(r)=.\sum_{i.t_{i}\neq 0}\phi_{i}\iota(t)=v(t)$. (3.4)

By inequality (3.3), it is easily seen that

$. \sum_{i.t_{i}\neq 0s:(\wedge}\sum_{st)i\leq t_{i}}=\sum_{s\in Mi(s\wedge}\sum_{:\iota)_{i}\leq\iota_{i}’}$

with the last summation being zero if $s$ A $t=0$ .
Definition $G(v, N)$ is called a totally convex multichoice game if for all coalition $t\in M$

$\sum_{s\in Mi:(s\wedge}\sum_{l)i\leq t_{i}}\frac{\Omega_{i}(s)}{\Omega(m)}$ ( $\delta_{i}(S)-\delta_{i}(S$ A $t)$ ) $\geq 0$ . (3.5)

Moving backwards, from (3.4) to (3.2) we come to the fact that if the Shapley value of
$G(v, N)$ lies in the core, then $G(v, N)$ is totally convex. Thus, we have proved the following
theorem.

Theorem. The necessary and sufficient condition for the Shapley value $\phi$ of MCG
$G(v, N)$ to be in the core $C(v, N)$ is total convexity of $G(v, N)$ .

Note that the proof of the theorem is valid for the games where players may have different
numbers of activity levels: $m_{i}\neq m_{j}$ for $i\neq j$ , where $i,j\in N$ .
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Finally, we consider that the definition of a totally convex multichoice game coincides
with another definition given by Izawa and Takahashi [6] on the class of usual n-person
cooperative games with characteristic form. For the sake of simplicity of $\mathrm{e}$‘xplanation, we
draw on the definition of total convexity proposed by Izawa-Takahashi.

Definition A cooperative game $(v, N)$ with the set of players $N=\{1, \ldots, n\}$ and char-
acteristic function $v$ is totally convex if for any subset $T$ of $N$ ,

$\sum_{S\subset Ni}\sum_{\in S\mathrm{n}T}\frac{(|S|-1)!(n-|s|)!}{n!}[v(S)-v(S\backslash \{i\})-v(S\cap T)+v(S\cap T\backslash \{i\})]\geq 0$ , (3.6)

where the summation $\sum_{S\subset N}$ is taken over all nonempty subsets $S$ of $N$ .
Note that game $(v, N)$ is equivalent to the MCG $c’(v, N)$ such that $M_{i}=\{0,1\},$ $i\in N$

and $\mathrm{o}\mathrm{n}\mathrm{e}^{-}\mathrm{t}_{\mathrm{o}^{-}\mathrm{o}}\mathrm{n}\mathrm{e}$ correspondence between $M$ and $2^{N}$ is constructed as follows: $s_{i}=0\Leftrightarrow i\not\in S$

and $s_{i}=1\Leftrightarrow i\in S$ for each $i\in N$ . Then $\frac{\Omega_{i}(s)}{\Omega(m)}=\frac{(|S|-1)!(n-|S|)!}{n!}$ , and $\delta_{i}(s)-\delta_{i}$ ( $s$ A $t$ ) $=$

$v(S)-v(s\backslash \{i\})-v(S\cap T)+v(S\cap T\backslash \{i\})$ , where $s\in M$ is related to $S\subset N$ . Thus (3.5)
coincides with (3.6) on the class of cooperative games.
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