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SPATIAL NUMERICAL RANGES OF ELEMENTS
OF C*-ALGEBRAS

LK - T TEEEM (SIN-EI TAKAHASI)

1. INTRODUCTION AND RESULTS

A ZHEE/ VLR A* ZEOYNZEM, az ADILET D, DL A PENK

ThhiX., £&
VA, o) ={f(@: f€A"|f|]=fD=1}
iX, a @ (algebra) numerical range & PRI, ZIIERFEE ¢ LOZETRNW a2y
NI MHEPEETHDZ EBFALNTNWS ([1,p.52]8H) . LALEXS A
IR THNE, ZOERBIIEERERIRY,. TOHBERLIIROZODEAZ
BATD
Vi(A, a) = {f(xa) : there exist [ € A" and x € A such that ﬂfﬂ = xﬁ = f(x) =1}
and o
Vy(A, a) = {f(ax) : there exist fE A" and x € A such that !fl = IxI =f(x)=1} .
Mim ABSBENMBITHIIL VA, @) = V(4,0 =Vy(4,a) L7825 TWD, A.K. Gaur and
T. Husain [3] I Va(A, @) Z4FIZ spatial numerical range & FECX, T DL S
EWDTND, ZOHT, A DEHCBTHS L XL,
co{d(p): pE D} C V,y(A, a) Cco{d(p): p E D}

BV DZ EHERLTNWD, TZIZa iXad Gelfand E#AERL, O, 12 A Ok
KA TFTNZEMEZRT ([3, Theorem4.1] 2) .

AEBETOEAOFEHMIX, C-ROWDBRIZBIT S spatial numerical range [ 1E
NEBOSETEEMTIONDZ &, ZLTEZEDRA L LT Gaur - Husain DFEERED
JEMHIRS AL THZ E 2R T EIH B, T EEHIZIRDL S IR 5NS
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Theorem 1. Let A be a C*-algebra and B a subalgebra of A. Let b€ B. Then
Vi(B, b) = {If|(b) : there exist f €A™ and x € B such that ifl: |x| =f(x)=1}
and
VB, b) = {l f I(b) : there exist fE A" and x € B such that I f I = le = f(x) =1},

where | f | denotes the absolute value of f (cf. [, Definition 12.2.8)).
If B is a *-subalgbera of A, then V,(B, b) = V,(B, b) .

FEB DR & LT, Gaur - Husain [3, Theorem 4. 1] DIETH~DHLEE & 72 > T
DIRD X S5 BRFEREHBS -

Corollary 2. Let A be a C*-algberaand a € A. Then
co{f(@): fEP(A)} S Vi(A, a) =Vy(A, a) Co{f(a) : f E P(A)},
where P(A) denotes the set of all pure states of A.

[, WD co{f(a): f € P(A)} = Vi(A, @) (=V,(A, @)) BSRRILT B2 ? o
co{f(@): fEP(A)} = V(A @) (=Vi(A, @) I3FRILT DD ?

2. PROOFS OF THEOREM 1 AND COROLLARY 2

Proof of Theorem 1. Set
W, = {'fl(b) i there exist fE A” and x € B such that |f| = le: f(x)=1}
and let A € Vy(B, b) . Then there exist g€ B™ and x € B such that A = g(xb) and
ﬂgﬂ=|xﬂ=g(x) =1. Take a functional f € A” suchthat f|B=g and lfﬂ=ﬂgl and let
f=u- l S l be the enveloping polar decomposition of f (cf. [2, Definition 12.2.8]). Then

1= f(x) =] flux) = (x| u*)!flsﬂxmfliu'ims 1-1=1, (1)
so that we can find a scalar a satisfying
Iu‘—axﬂIﬂ:O 2
since the equality of the Cauchy-Schwarz inequality in (1) holds. Note that (1) implies
1 x) = (x| W)=l w) = (x! x)=1 : 3)

and hence 1 —a - a + I a |2 =0 by (2). Therefore, @ must be equal to 1, and so
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ﬂu'— x Il 'S 0, thatis #"—x belongs to the left kernel (in the envelopig von Neumann algebra
of A) Ny={xEA":|f|xx)=0} of |f|. Alsosince |f|(x*x):(xlx),f|=!xﬂ|f!2= 1 by
(1), it follows that 1—x"x € N,;, where 1 denotes the identity element of A** .

Therefore we have
A= flxb) = | f (uxb) = (xb 1 u") ;= (xb | %) =| f|(x"xb) =] £|(B)
(the 4"-equality follows from u’—x € Nj;| and the 6®-equality follows from 1-x'x& N
and hence AE W,, so Vi(B,b)CW,.
Conversely suppose A € W, . Then there exist f € A" and x € B such that A= ] f ](b)

and | f]=]x]=/0=1. Let f=u- | /| be the enveloping polar decomposition of f .
Then we can apply directly the above arguments for f, x and u. Consequently, we have
J(xb)=| f|(®) and hence AE V(B b), so W, C Vy(B, b). We thus obatain
V(B,b)=W,. .

We next set

W, = {lfI(b) : there exist f € A" and x € B such that ifﬂ = |x|= f(xXH)=1}.
and let A€ Vy(B, b). Then there exist g € B and ¥ € B such that A= g(bx) and
Hgﬂ=ﬂx|=g(x) =1. Take a functional f € A" such that f1B=g and ﬂfﬂ=ﬂg|. Then
N7l =R and 1= p = F,

sothat A= f(bx) = [ (x'b"), |f*|=|f|=|xizﬂx*| and 1= f(x) = f (x), and hence
LEV(B,b"), where B={x€E A:x" € B} . Therefore by the preceding argument, we can
find hE A™ and y € B such that A=|k |(b') and ﬂh|= yl=ro"=1. This means that
AEW,, sowehave Vo(B, b)) CW,.

The inverse inclusion W, € Vy(B, b) can be easily obtained by tracing the converse of the

above argument.
Set
A z={fEA": Ifl =1 and there exists x € B such that ﬂxl: f(x)=1}
and
A;B ={fEA": |f|= 1 and there exists x € B such that ﬂxﬂz f&xH=1}.
If B is a *-subalgebra, then f— f* is a bijection of A} , onto A; , and hence we have
Vi(B, b) = {{Fb) : f €A 2} ={| /(D) : F EAL 5} = Vu(B, ) .
Q.E.D.
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Proof of Corollary 2. Let A be a C*-algberaand a € A. Then we have
Vi(A, @) =V,(A, a) by Theorem 1. We next show that co{f(a) : f € P(A)} CVi(A,a). To
do this, let a € co{f(a): f € P(A)} . Then there exist fi1; - » fimps -+ » Jot» -+ » Jom, € P(A)
and Ayy, oo 5 Ay oo 5 Aty oo 5 Ay, = O such that

gg_;;‘av::l,z

T S ST e, T =T and 7, =Ty (i=]).

n

n m‘-

Let myemy = ..=q; .., X,=x, =..=mx . Foreach i,j(lsi=sn 1=jsm),
choose an isomorphism U;; of the Hilbert space H,, onto the Hilbert space H, = which
i j

uansfon;ls 7(x) into 7, (x) forevery *€ A, andset §;;= Uif'(gﬁj)‘ Also set
fzgnljgl A f; . Then we have |f|= L, f=|f]’ a= f(a) and
J@)= 2 2 A (0F, 1 6) = 3, 3 A (1816, )

for every x € A. Furthermore since &, , ... , &, are mutually inequivalent, it follows that
there exists a hermitian element y € A such that w(y)5,,;=§,, (1=<i=<n, 1=<j=m) by [2,
Theorem 2.8.3, (i)].

Consider the continuous function 2(z) on [0, ®) defined by

]t ifOst=s1
M”‘{l,yz>1 ’

and set 2= h(y*) . Then Zz is a positive element of A with Izl =< 1. Moreover, we assert that
7§, =&, (I1sisn, 1sj=sm). **
In fact, let £> 0 be arbitrary and take a polymonial p(?) such that
p(0)=0 and sup{'p(t)—h(t)l: Osts<|z[}<e/2. Let 1sisn andl=sj<m,. Then
i”i(z)gij - EijI = E ni(h(yz))gij - ”i(P(yz))‘sijl + |P(75i(y2))§ij -&;
<|no» - poA) |+ | P - 1]
+

s =&

Do
e

and hence we obtain (**) since ¢ is arbitrary. By (*) and (**), we have

@)= 3 23 A @81 8)= % 2 A,=1.

i=1j=1
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Consequently we have o € V (A, @) and so co{ fl@): fEPLA)}YC V(A a). _
We next show that Vi(A, a) C Cﬁ{f (a@): fEP(A)}. Todothis, let aE YV, (A a) and so

there exist f €A’ and * € A such that a=|f|(@) and|f|=]x|= () =1. Note that

| f |(x*x) =1 as observed in the proof of the main theorem and consider the following set :
S={gE€EAg=0 and |g|=g(x‘x)=1}. |

Then l f I €S and S is weak*-closed. Moreover, we can easily see that any extreme point of

§ is also an extreme point of {g € A':g=0 and lg l =1} . But since the extreme points of

{gEA :g=20 and I g I s 1} consist of 0 and P(A) (cf. Proposition 2.5.5), it follows by the

Krein-Milman theorem that § C ©0 P(A) . Then a=|f|(@) =1im g,(a) for some net {g}

in coP(A), and hence a € co{f(a): fE P(A)}. Q.E.D. -

3. COMMUTATIVE CASES

X %R %2 k Hausdorff 220, C(X) 2 EREATE R 425 X Lok
B DD DAH CXE], A % C(X) DU, f % A KB THEHL TS, Zod
X, Wi Vi(A, ) =Vy(A, ) BEKY Lo TWAD, Z O spatial numerical range [ZBJ L
TIEHRDESIZE 5D LELWVERERD.

Theorem 3. Let A be a subalgebra of Co(X) and f € A. Then
VA, )= {f fd|p|: there exist p€ M(X) and g € A such that |u|=|g]|. = f gdu=1}
COR(,
where M(X) denotes the space of all bounded regular Borel measures on X and ],u|
denotes the total variation of u. Moreover, co R(f) S V(A, f) if A has the following
property : For any finite set {x,..., X} in X, there exists § € A such that Ig L, =1 and
gx) =...=g(x)=1.

Fle A DB *2RETIEAIL ROLHICh - LELVWVERSES,

Corollary 4. Let A be a *-subalgebra of Cy(X) and f € A. Then
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V(A f)={ f Jdu : there exist u€ M(X) and g € A such that

|u|=l,uz0,0s‘gsl andfgdu:l}.
Moreover,

V(A, )= {f fdu:0spe MX), |,u|= 1 and supp(u) is compact} ,

if A has the following property : For any compact set E C X, there exists g € A such that
O<g=<1 and g(x) =1 forall x€ E. Here supp(u) denotes the support of u .

BRBICEFZH LTI OHiE&b5 5,
Let X=(0,1], the half open interval and let & € Cy(X) be such that A(x) = O for all
x€X. Set
A={hg:gECy(X)}.
Then A is an ideal (and hence subalgebra) of Cy(X) . In this case, A is neighter closed or
unital. Also A has the desired property : For any compact set £C X, there exists g € A
such that |g],=1 and g(x)=1 forall x€ E, and so by Theorem 3, we have

V(A, )= {f fd]u|: there exist u € M(X) and g € A such that |,u|=|g!vw=fgd,u= 1}
and
co R() CV(A, /) Sco R(H)
forevery f€ A. Inparticular, if f € A is real-valued, then we have

[a, B] if f has a zero point
V(A )=

(0, B] or [, 0) if f does not have a zero point,
where a=inf{f(x): x€ X} and B=sup {f(x): x E X} .

Of course, this holds even if A =Cy(X), so we have the spatial numerical range of the
function f(x) =x (x € X) with respectto Co(X) is equal to X =(0, 1]. This fact has been
observed in [3, Example 4.2].

Also, A is not generally a *-subalgebra of Cy(X). Butif % is real-valued, then A

becomes a *-subalgebra of C,(X) andso A has the property : For any compact set EC X,
there exists § € A suchthat 0<g=<1 and g(x)=1 forall xEE.
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