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Radon-Nikodym sets, .Pettis sets and uniform Gateaux.
differentiability of support functions

Minoru MATSUDA (#AH £2)
" Faculty of Science, Shizuoka University (FMAZELS¥)

1. Introduction

Let X be an arbitrary real Banach space, X* and X** its topological dual
space and bidual space, respectively. In dual Banach spaces, we have two
notions of weak*-compact sets called Pettis sets and Radon-Nikodym (RN in brief)
sets, which are generalizations of weak*-compact convex sets with the weak RNP
and the RNP, respectively. Now, let us (re)define two notions, generalizations
of equivalent notions of Pettis sets and RN sets, in the following form.

Definition 1. Let A be a bounded subset of X and K a weak*-compact
(not necessarily convex) subset of X*. Then '

(1) X 1is said to be an A-Pettis set if every weak*-compact subset D of K
has the following property : For every x** € A* (the weak*-closure of A in
X**) and every & > 0, there exists a weak*-open subset U such that UND #¢
and 0(x**]UND) (= sup{ (u*, x**) s u* €UND } - inf{ (v*, x**) : v* € UND },
the oscillation of x** on UND) < e.

(2) K is said to be an A-RN set if every weak®-compact subset D of K has
the following property : For every & > 0, there exists a weak®-open subset U
such that UND # ¢ and diama(UND) (= sup{ qa(u* - v*) : u*, v* € UND }, the
qa-diameter of UND) < &. |
Here qa is the Seminorm given byqu(Xf) = iggl(x, x*)| for every x* € X*.

Note that if A = B(X) (the closed unit ball of X) in (1) (resp. (2)) of
Definition 1, then we have an equivalent notion of Pettis (resp. RN) sets.

Definition 2. Let g : X — R be a continuous convex function and A a
bounded subset of X. Then g is said to be A-uniformly Gateaux differentiable
at x € X if Dg(x, y) exists uniformly in y € A, where Dg(x, y) is defined by
%ig { gx + ty) - g(x) }/t provided that this limit exists.
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Now, in a series of our papers [4], [5], and [6], we have made a study of
K-weakly precompact sets A, an equivalent notion of A-Pettis sets K, by the
effective use of K-valued weak*-measurable functions constructed in the case
where A is not K-weakly precompact. In this paper as well, by following the
same ideas of the best use of K-valued functions constructed in the case where
K is a non-A-Pettis set or a non-A-RN set, we wish to give characterizations of
A-Pettis sets and A-RN sets in terms of uniform Gateaux differentiability of
support functions. This result provides us with an information to recognize not
only the similarity but also the subtle difference between these two notions in
the convex analytic phenomenon.

Theorem. Let A be a bounded subset of X and K a weak*-compact subset
of X*. Then

(1) K 1is an A-RN set if and only if for every nonempty subset G of K and
every sequence {X.}.»1 in A, there exists a point y of Y (closed linear span
of ¥ = { x. :n21}) such that Dsc(y, x.) exists uniformly in n (that is,
S¢ is W-uniformly Gateaux differentiable at y), where s¢ (: Y = R) is the
support function of G defined by sc(y) = igEG(y, x*) for each y €Y.

(2) K is an A-Pettis set if and only if for every nonempty subset G of K
and every sequence {X.}.z1 in A, there exists a point y of Y and a
subsequence {Xa (k) k21 Of {Xa}a21 such that Dse(y, Xa o) exists uniformly in
k (that is, sc is ®-uniformly Gateaux differentiable at y, where ® = { Xa )
k21 )

The part (2) of Theorem (essentially given in [7]) may be regarded as a
slight generalization and improvement of results due to Bator and Lewis[1]. The
thing to be emphasized is the proof of the sufficiency of statements (1) and (2)
of Theorem, which readers should appreciate well. In Section 2, we introduce a
result showing that the construction of certain K-valued weak*-measurable
functions can be done under some assumption of weak*-compact subsets K of X*
(For further details of this result, refer to [4] and [6]). Making use of this
result, in Section 3, we can present basic functions to study A-Pettis sets K
and A-RN sets K and further, applying these functions, we state the proof -of
the sufficiency of statements (1) and (2) of Theorem. Indeed, these functions
are useful for us to study other various properties of A-Pettis sets and A-RN
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sets simultaneously. In what follows, all notations and terminology, unless
otherwise stated, are as in [2], [4] and [6]. ‘

2. A brief on the construction of certain weak*-measurable functions

In order to proceed our argument concerning the construction of certain
weak®-measurable functions with various desired properties, we first need :

Definition 8 ([9]). A sequence (A., B.).zy of pairs of subsets of some set
is called independent provided A.NB, = ¢ for every n and for every
{e;hicsak with €5 = 1or -1, N{e;A; : 1 £ j Sk} # ¢, where £ ,;A; = A; if
€; =1 and e;A; = B; if &; = -L

Let D be a weak*-compact subset of X*. Suppose that there exists a system
{V(,i) :n=0,1, == ; i=0, ==, 2* - 1 } of nonempty weak*-closed subsets
of D such that V(ntl,2i)UV(n+l,2i+1) C V(n,i) and V(n+tl,2i)NV(n+1,2i+1)
=¢ for n=0,1, ~and i=0, -, 2® - 1. Then, letting A, =
U{ V(n,2i+1) : i =0, =+, 2°°* -1 }and B, = U{ V(n,2i) : i =0, -,

2 -1} for every n 21, (A, B.)ay is an independent sequence of pairs of
weak*-closed subsets of D. Then I' = N,y (A.UB,) is a nonempty
weak*-compact subset of D, since (A., B.).»1 is independent. Now, define ¢ :
' - P(N) (Cantor space, with its usual compact metric topology) by ¢ (x*) =
{J:A;3x* } e P(N). Then ¢ is a continuous surjection and so we have a
Radon probability measure ¥ on I' such that ¢ (v) = v (the normalized Haar
measure if we identify P (N) with {0,1}) and { u- ¢ : u € L,(PW), =2, . v) }
=L (', =y ,v), where =, (resp. =+ ) is the family of all

v (resp. 7 )-measurable subsets of P (N) (resp. I'). Further, consider a
function 7 : P(N) = I defined by = (J) = j% 1/2° for every J € P(N).

Then T is a continuous surjection such that t(v) = 2 and { ve T : vE L, }
=L,(PWM),2, . v). Then, making use of the lifting theory, we have a
weak®-measurable function k : I — ['(C D) such that

(@) p(fek)(t) = f(k(t)) for every f € C(I') and every .t €1,

(b) fE £(k(t))d A (1) = ‘g_l(r_l(m)f(x*mv(x*)
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for every E € A and every f € C(I'). Here p is a lifting of L.. Further
we should remark here that T (¢ (v)) = A, U{¢ (7 *(I(n,21))) :
0<i<€2°t -1} = I'NB,, U{9 (7 (1(n,2i+]))) : 0 i g2t -1} =
I'NA, (with respect to v) for n =1, 2, -+, and it also holds that

¢ (7t 71(0(n,21))) C V(n,2i) and ¢ (7 *(0(n,2i+1))) C V(n,2i+l) for n =
1, 2, =~ and i =10, -+, 2°7* - 1 (Here O(n,i) is the set of all interior
points of I(n,1)). Hence this function k : I — D satisfies the following :

j;@'zﬂf(k(t))d“t) ) J;‘I(I‘I(I(n,Zi)))f(X*)dY o)
i ‘fr T o AR A
and
‘I;(n,21+1)f<k(t))dl (t) - ~£‘—~l( T —1(I(n’ 21+1)))f(x*)d7 (X*)
- f f(x")dy (x*)

' NV(n, 2i+1)
for feC(r'), n=1, 2, - and i =10, -, 27 - 1.

3. Basic functions associated with non-A-RN sets and non-A-Pettis sets,
and proof of the sufficiency of statements (1) and (2) of Theorem

Here we present a fundamental result (Proposition) giving the sufficiency of
statements (1) and (2) of Theorem simultaneously.

Proposition. Let A be a bounded subset of X and K a weak*-compact
subset of X*.

(i) Assume that there exists a weak*-compact subset D of K with the
property : For an & > 0, it holds that diam,(UND) > e whenever U is a
weak*-open subset with UND #¢. Then the following statements hold.

(a) There exist a system { x(n,i) :n=20, 1, - :i=0, -, 2° =17} in



21

A and a system {V(n,i) : n =0, 1, = ;i=0, -, 2* -1 } of nonempty
weak*-closed subsets of D such that

(1) V(n+1,2i) UV(n+1,2i+1) C V(n, i),

(2) x* € V(ntl,2i) and y* € V(n+1,2i+1) imply (x(n, i), x* - ¥*) 2 ¢
for n=0, 1, ~~and i=0, =, 2" -1 | |

Consequently,

(b) We have a weak*-measurable function g : I — D such that for an
appropriate sequence {ya}n31 in A, sc is nowhere W-uniformly Gateaux
differentiable in Y, where G =g(I), ¥ = {y. :n21}and Y denotes the
closed linear span of W, (and further, s is nowhere A-differentiable in X if
A=-A).

(i) Supposé that there exists a weak*-compact subset D of K with the
property : For an adequate element a** € f* and an & > 0, it holds that ,
0(a**|UND) > & whenever U is a weak*-open subset with UND #* ¢. Then the
following statements hold.

(¢) There exist a sequence {Xa}n>1 in A and a system { W(n,i) : n = 0, l,;

-3 1i=0, ==, 2" - 1} of nonempty weak*-closed subsets of D such that

(1) W(n+l,21i) UW(n+1,2i+1) C W(n, i),

(2) x* € W(nt1,2i) and y* € W(n+l,2i+1) imply (Ras1, X* - ¥°) 2 &
for n=0, 1, - and i=0, -, 2" - 1.

Consequently,

(d) We have a weak*-measurable function h : I — D satisfying that for
every subsequence {Xa (o Jxa1 Of {Xa}n31, Su is nowhere ®-uniformly Gateaux
differentiable in Z, where H=h(I), ® = { X : k21 }and Z denotes

the closed linear span of { x. : n 21 }.

Proof. (I) To show the statement (a) of (i), replacing the unit ball by a
bounded subset A of X in the proof of Proposition 5.6 in [8], we can
construct a system { x(n,i) :n=20,1, -+ ; 1=0, -, 2 ~-1}in A anda
system { U(n,i) :n=0, 1, ==~ ; i=0, ==, 2® -1 } of weak*-open subsets such
that o

(a) U(n,i)ND *+ ¢,

(b) (U(n+1,2i)ND)U (U(n+1,2i+1)ND) C U(n,i)ND,

(¢) x* € U(n+1,21)ND and y* € U(n+l,2i+1) ND imply (x(n,i), x* - y*) 2 ¢
for n=0,1, =-and 1i=20, -, 2* - 1. '

Let V(n,i) = w*-c1(U(n, i) ND) (the weak*-closure of U(n,i)ND). Then we have
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desired systems { x(n,i) :n =20, 1, === ; i =0, ==, 2 -1 }and { V(n,i) : n
=0, 1, =+ :1i=0, -, 2 -1} |

(I) Let us prove the statement (c) of (ii). This also can be proved by an
argument analogous to (I). In virtue of the assumption, there exist an element
a** € B* and a positive number & such that 0(a**|UND) > & whenever U is a
nonempty weak*-open subset with UND = ¢. Let U(0,0) = X. Suppose that for
some positive integer k, { U(n,i) :n =0, 1, =+, k:i=20, -, 2 -1} and
{Xa}1cnck have already been defined so that proprties (a), (b) and (¢) hold.

(@) U(n,i)ND #¢ for n=0,1, -+, k and i=0, -, 2% -1

(b) (U(n+1,21)ND)UU(n+1,2i+1)ND) C U(n,i)ND for n=0, 1, -, k - 1
and 1 =0, -, 2% -1,

(¢c) x* € U(n+1,21)ND and y* € U(n+1,2i+1)ND imply (Xus1, X* - y*) 2 ¢
for n=0,1, -, k-1 and 1=0, -, 2%t -1,

Then, by assumption, we have 0(a**|U(k,i)ND) > & for i =10, ===, 2% - 1, and
hence, for every such i there exist elements x*(k+1,21) and x*(k+l,2i+1) of
U(k,1)ND such that (x*(k+1,2i) - x*(k+1,2i+1), a**) > e. Since A is
weak*-dense in A% we can choose an element x.+: € A such that for every i
with 0 <1 €25 -1, (Xks1, x*(k+1,21) - x*(k+1,2i+1)) > e. Take a positive
number & such that (xk+1, x*(k+1,2i) - x*(k+1,2i+1)) > ¢ + & for every i
with 0 <1 <2% -1, and let U(k+1,2i) = { z* € Uk,i) : (Ris1, 2%) >

(Rev1, x*(k+1,21)) - 6/2 } and U(k+L,2i+1) = { z* € U(k,i) : (Rus1, 2*) <
(Xk+1, x*(k+1,2i+1)) + 6/2 } for every i with 0 £ i £ 2% - 1. Then they
are nonempty weak*-open subsets with U(k+l,i)ND # ¢ for every i with
0£1i¢<2%" -1, Furthermore, we easily get that x* € U(k+1,2i)ND and y* €
U(k+1,2i+1)ND imply (Xx+1, X* - y*) 2 ¢ for every i with 0 <1 € 2% - 1.
Hence, letting W(n,i) = w*-c1(U(n,i)ND), we have desired systems {X.}.»: and
{Wn,i) :n=0,1, == ;i=0, -, 2" -1}

(II) (Construction of functions) In order to obtain g (resp. h) in (b) of
(i) (resp. (d) of (i)), take 'y = M,y (ALUBL) (resp. I's = Nay (CaUD.) ),
where A, = U{ V(n,2i+1) : i =0, =+, 2°7* =1 } (resp. C. = U{ W(n, 2i+1) :
i=0, -, 2" -1} and B, = U{V(n,2i) : i=0, ==, 2°°' =1 } (resp. D.
= U{W@,2i) : i=0, -, 2°7' =1 }). Then, by the result in Section 2, we
have a weak®*-measurable function g (resp. h) : I — D such that

@) p(feg)(t) = £(g(t)) (resp. p(foh)(t) = £(h(t)) for every f € C(T",)
(resp. C(I'z) ) and every t €I,



(b) JI; flg(t))da () = "gl‘l(t‘f(E))f(x*)dy (x*)
(resp. j[:; f(hv(t))dl(‘t) = f f(x*)dy 2 (x*) )

¢~ (T 1 (E))

for every E € A and every f € C(I";) (resp. C(I";z) ). Here ¢ (resp. ¢3)
is the function defined by ¢ 1(x*) (resp. ¢2(x*) ) = { j : A; 3 x* } (resp.
{j:C;3x*}))eP(N) foreach x* € I'y (resp. I'z) and v (resp. v 2)
is the Radon probability measure on I'; (resp. I'2) such that ¢ (v 1) (resp.
$2(v2)) = V.

(IV) We intend to show that this function g (resp. h) has the property in .
the statement (b) of (i) (resp. the statement (d) of (ii)). To this end, we
note a following elementary fact used to show such properties of g and h.

Lemma (Lemma 2 in [3]). Let E;, -+, E. be arbitrary members of A*. Then
there exist a natural number p and a finite collection { i, -+, im } of
non-negative integers such that

(1) 0 €21y, ==, 2:in < 27 - 1,

(2) Both E.NI(p,2-i.) and E.NI(p,2-ix+l) are in A* for k=1, -, m

In the following, let a(n,i) (resp. c(n,i) ) = inf{ (x(n, 1), x*) : x* €
V(n+1,2i) } (resp. inf{ (%Xn+1, x*) : x* € W(n+1,2i) } ) and b(n, i) (resp.
d(n,i) ) = sup{ (x(n, i), x*) : x* € V(n+l,2i+1) } (resp. sup{ (Xn+1, Xx*) : x* €
W(n+l,2i+1) } ) for every (n,i). Then it holds that a(n,i) - b(n,i) (resp.
c(n,i) - d(n,i) ) 2 ¢ for all (n,1i).

(1) Let us prove that g has the property in (b) of (i). Let {ya}a>1 be a
sequence defined by y. = x(m,;i) for n=2"+1 with m=20, 1, ==~ and i =
0, =+, 2 - 1. Take any point y of Y and consider a family of weak*-open
slices of M, (= @*(§*(T*(AM)))) ) : {S(y,e.”/3n, M) : n 21}, where j*
is the dual mapping of the inclusion map J : Y — X. Then we have that

Sy, €./3n, M) = {y" €M, : (3, ¥) > SUpy (y, z*°) - ¢./3n}

={y €M : (3 ¥°) > es5=SUD Gy, et)) - ¢/ 3n}
te

23
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={y" €M : (v, ¥ > ss(y) - €./3n }.

So, letting E. = { t €1 : (j(y), g(t)) > se(y) - €./3n }, we know that E, €
A* and j*(g(E.)) C S(y, ¢./3n, M;) for every n. Hence, in virtue of
Lemma (and its proof in [3]), there exists a strictly increasing sequence
{pPn}n31 of natural numbers and a sequence {i.}.»1 of non-negative integers such
that 0 £ 2-i, < 2% - 1, E.NI(pn,2-ia) € A* and E.NI(p.,2-1,+1) € A* for
every n21. Let F, = E.N0(ps,2°1,) and G. = E.NO(pa,2-i.+1), and define
U = § (T (xen /A (Fa))) and va* = j*(Te" (%6, 2 (G))) for every n 2 1.
Then we have that for every n

(@) (y, u.®) >se(y) - €/3n and (y, v.*) > ss(y) - €./3n,

(B) (za, Ua® - Vvoa*) 2 & (Here, z. = x(pa-1,1.), and so {Za}us1 is a
subsequence of {¥n}n31),

(c) sa(y *+ za/n) 2 (y + zo/n, un*) and se(y - za/n) 2 (y - z./n, v.%).
Indeed, we have that

(v, ") = GO, T (x e A (Fa)) )

= {j;, (), g(t)dA ()} A (F.) > se(y) - €./3n,

since j*(g(F.)) C S(y, € /3n, M,). Similarly, (y, v.*) > ss(y) - &./3n.
Thus we have (a). Also we can prove (b) as follows. We have that for every n

(zn, W - va®) = (((za), Te" (X 2 (Fa)) ) = (§(za), Te* (X6 2 (Gn)) )

(x(Pa-1,10)), Te*(xrp/ 2 (Fa)) ) = G(x(pa-1,10)), Te* (X6, 2 (Gn)) )

1

{jl; (G(x(pa-1,10)), &(t))dA(£)} 2 (F.)
- {j(; (G(&xlpa-1,ia)), g(t))dA(£)}/ 2 (Gn)

- {{1_%_1@“))<J<x<pn—1,1n>>, x*)dv 1 (x*)}./ 4 (F,)
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- | { '{b‘l_lv(,t ~1(Gn))(J(X(pfx—l, 1n)), Xf.)dybl(x*)}/l (Gn)

> a(pa-1,i) - b(pa-1,1a) 2 €.
As to (c), we have that for every n

' sely +,zn/n>;¥'su¥ (i + z./n), g(t))
te :
%{J;(ﬂy+sz,g&Ddluﬂ/ﬂxm):(y+szmﬂ.

Similarly, se(y.- za/n) 2 (¥ - z/n, va*). Now, making use of (a), (b) and (c),
let us show that s¢ is not U-uniformly Gateaux differentiable at y. We
easily get from these properties that for every n

sc(y + za/n) + sc(y - za/n) - 2-s56(y)
> (¥ + za/n, W) + (¥ - zo/n, vo*) - { (3, wa* +va*) +2¢,/3n }
= (Za, Un® - Vou*)/n-2¢ /302 ¢ /3n,

whence { sa(y + z./n) + se(y - za/n) - 2-s6(y) }/(1/n) > & /3 for every n.
This means that Dsc(y, z.) does not exist uniformly in n and so s is not
W-uniformly Gateaux differentiable at y. Further, assume that there exists a
point x € X such that s¢ (. X — R) is A-differentiable at x, and let x*
be its A-differential. 4Well, since A = - A, by a slight modification of the
argument above, we have sequences {Wa}nai in A and {u.*}a21 in X* such that
21, (x, ua*) > se(®) - €30, (Wa, wa" - x*) 2 /2 and

se(x + wo/n) 2 (x + wa/n, u,*). Then we have that for every n 21,

V4

for every n

se(x + wy/n) - sa(x) - (Wa/n, x*)

> (x + wa/n, W) - {(x, wS) + &30} - (Wa/n, x°)
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= (wo/n, Un* - x*) - €./3n > ¢ /6n.

But, this is contradictory to the fact that x* is an A-differential of s¢ at
X. Hence we complete the proof of properties concerning the function g.

(2) Let us prove that h has the property in (d) of (ii). We note a
following elementary fact : Let E € A* and {n(i)}:»; be a strictly increasing
sequence of natural numbers. Then there exists a natural number i and a
non-negative number q with 0 £ 2q < 2" -1 such that both ENO0(n(i), 2q)
and ENO0(n(i),2q+1) are in A*, which can be easily shown by an argument used
in Lemma 2 of [3]. ,

Now, let us show that for evefy subsequence {Xn () }x21 Of {Xa}a21 and every
z € Z, Dsu(z, X. ) does not exist uniformly in k. To this end, take any
point z in Z and any subsequence {Xa ) }x»1 Of {Xa}nz1, and set zx = Xa (o
for every k. Consider a family of weak*-open slices of ¢0*(j*(T»* (A (1))))

(= M) : {5(z,e.73i, My) : i 21}, where j* is the dual mapping of the
inclusion map j : Z — X. Then we have that for every i

S(z, € /31, Mp) = { z* € My : (z, z%) >v§gﬁ (z, v*) - €./8i }
={z*€eEM : (z, z%) > ess—%g? (j(z), h(t)) - € 78i }

={z" €M : (z, z*) > sulz) - 731 ).

So, letting E; = { t €1 : (j(z), h(t)) > su(z) - €31 }, we get that E,; €
A* and j*(h(E;)) C S(z, e /3i, M) for every i. Hence, by the elementary
fact stated above, there exists a natural number k(i) and a non-negative number
q(i) with 0 € 2q(i) < 2@ -1 such that both E;NO(a(k(i)),2q(i)) and
EiN0((k(i)), 2q(i)+1) are in A*. For every i, let F; = E;N0((k(i)), 2q(i))
and  Gi = E:N0(n(k(i)),2q(i)+1), and let wui* = j*(Tw*(x¥, /2 (F:))) and v;*
= §*(Ta*(x6, /2 (G:))). Then we have that for every i

(@) (z, w;*) >su(z) - €731 and (z, vi*) > su(z) - € ./3i,

) (zv gy, us* - v;*) 2§,

(C) SH(Z + Zk (1) /1) 2 (Z + Zk (i)/i, ui*) and SH(Z - Zk(i)/i) 2
(z - zx @ /1, vi*).
Indeed, we have that
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I

(z, wi*)

(@), T (xe, /2 (F:)))

It

{J;,.(J'(Z), h(t))dA (1)} A (Fi) > su(z) - &./3i,

since j*(h(F:)) C S(z, e /31, My). Similarly, (z, vi*) > su(z) - & /3i.
Thus we have (a). Also we can prove (b) as follows. We have that for every i

(zx (1, Ui" — vi¥)
= (@) T s /AED)) - Glaw), T (xo, /2 6:)))

= (J(Xn (k (i))), Th*(XFi/l(Fi))) - (j(Xn (k(i))), Th*(XGi/l(Gi)))

il

{.ngunwun>,h«)Mﬂ(@}/&(&)

- A j(;'(j(xn w @)y h(E))dA (1)} 2 (i)

{ ‘!/:z'_l(’l,‘ _1(F1))(j(xn k(1)) XAy 2(x*)} A (F;)

-{if%Tﬂmﬁgxm“mn,vaxfn/xma

[[\v4

c(n(k(i)),q(i)) - dk(@)),q(i)) 2 €.
As to (c), we have that for every i

su(z + zx 1y /1) = %g? (j(z + zw iy /1), h(t))

2 {jl;(J(Z + zi /1), hDAA W)}/ A(F:) = (2 + 2w (1) /1, ws?).
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Similarly, su(z - z« ) /i) 2 (z - zw (» /1, vi*). Then, making use of (a), (b)
and (c), we have that for every i

su(z + zx iy /1) + su(z - zx 1) /1) - 2-su(2)
>+ zew /i, i)+ (@ - zewy /i, vi¥) - { (z, wi* +vi*) +2¢e 731}
= (Zewy, Wi - vi*) /1 -2¢ /312 ¢/3i,

whence { su(z + z« (1) /1) + sulz - zx 1 /1) - 2-su(2)}/(1/1) > € /3 for every
i. This implies that Dsu(z, X. ay) does not exist uniformly in k and so su
is not ®-uniformly Gateaux differentiable at z. Thus the proof is completed.
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