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Nonlinear Ship Motion in Waves
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Abstract

Water flooding into ships led to some tragic capsizing accidents. We ex-
perimentally found nonlinear motion, including chaotic one, of a flooded ship
in waves. The experimental results suggested that coupling of roll motion and
flooded water dominates this nonlinear phenomenon. We derive a mathemati-
cal model for this coupled motion and study bifurcation of periodic solutions.
The results show that the nonlinearly coupled system can produce complicated
bifurcation phenomena and that chaotic solutions are generated after periodic

solutions become unstable with the Neimark-Sacker bifurcation.

1 Introduction

The passenger ferry Estonia capsized due to water flooding onto the vehicle deck in the
Baltic sca in September, 1994, with heavy loss of lives. The ferry Estonia met the existing
safety rule which is based on a static stability analysis. Why did such a safe ship capsize? _

We carried out some experiments to examine dynamic stability of a flooded ship in waves[1].
The experimental results showed that a flooded ship could exhibit nonlincar roll motion in
regular waves, and that coupling of roll motion and flooded water dominates this nonlinear
response. In addition, we experimentally investigated variation of roll motion of a flooded
ship with the wave height using a box-shaped model. The results demonstrated complicated
bifurcation phenomena including chaotic motion.

- Nonlinear dynamical approaches have been applied to a mathematical model for nonlinecar
ship motion[2-5]. We derive a mathematical model of the 1st order ODE form for the coupled
motion of roll and flooded water. In order to understand mechanism of nonlinear response of

a flooded ship in waves, we examine bifurcation of solutions of this model.
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2 Experiments

Figure 1 shows a gencral view of a box-shaped model (the length L=0.92m, the breadth
B=0.45m, the draft d=0.11m, the freeboard f.=0.02m, the displacement W=45.54kg, the
natural period of roll motion T,,,=1.54scc.) used in experiments[1]. We measured roll, sway

and heave motion in waves of constant height and period using potentiometers.

Measuring system

1.5m

Roll [deg]

Time [sec]

(a) Time series (b) Reconstructed attractor
Fig.2 Measured roll motion of the box-shaped model

(Wave height H=18.2cm, wave freq. f=0.7Hz, amount of water inside the ship w=>5kg)

Figure 2 shows an cxample of measured roll angle ¢ under the conditions of the wave
frequency f=0.7Hz, the wave height H=18.2c¢m, and the amount of water inside the ship
w=>58kg. The attractor in fig.2(b) is reconstructed by using delay coordinates (¢(t), o(t + 7))
with the delay time 7=T/4 (T: wave period). '
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Fig.3 Stroboscopic plots of fig.2

(9; phase of incident waves)

Figure 3 displays the stl‘()l.)()S(:(SI)i(: plots of (&(t), qb(f + 7)) on Poincaré scctions with J=0,
30, 60, ---, 330 deg. where 9 denotes the phase of the incident waves. We can clearly see
stretching, folding, and compressing process. In addition, we caleulated Liapunov exponents
of this data, and found that the maximum one is positive. These results indicate that the
measured roll motion in fig.2 is chaotic. We also found complicated bifurcation phenomena

with changing wave heights.

3 Mathematical Model and Bifurcation Analyses

3.1 Modelling of the Coupled Motion of Roll and Flooded Water

Fig.4 Illustration of two-dimensional motion of a flooded box-shaped ship
in regular waves

(¢; roll angle of a ship, \; slope of the surface of flooded water, by; breadth of a ship,

by breadth of a vehicle deck, dy; draft, f,; freeboard, d,; depth of flooded water,

G,: center of gravity of a ship, G,; center of gravity of flooded water, B,; center of

buoyancy of a ship)
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From .observations of the experiments, it was found that the nonlinear phenomena were
dominated by coupled motion of roll and flooded water in waves. Then we derived a mathe-
matical model for the coupled motion in regular waves, as shown in fig.4, assuming (1) coupling
of roll motion and flooded water is dominant, and sway and heave modes can be n(‘gk(‘r(\d
(2) the surface of flooded water is flat with the slope x, (3) the motion of flooded water can
be approximated by that of a material particle located at the center of gravity G, (4) the
forcing roll moment varics sinusoidally with the same angular frequency as the incident waves
Q, and (5) the damping moments on the ship and flooded water vary linearly with ¢ and y (
=d/dt), respectively. Take the coordinates, as shown in fig.4, of which the 2- and the y- axis
are defined to the horizontal and the vertically upward directions, respectively, and the origin
is set at the center of gravity of the ship G,. On the above assumptions, the kinetic energy K,

the potential energy P, and the rate of cnergy dissipation D can be expressed as

N S Lo 2
K, = -§M/ KoQ° I\.,“,, =3m (.I»Gm + yGf” )
P,,. = _(JV‘[ + '"’r)!/i‘/l% ) -Pu/ =mgyc.,

R)(q’) t) = —@{Ag + Ay sin(Qt +¥)}
: 1 . 1
2 02
D= 5’/36.') + '2—1/11;/\
where the subscripts 4. o, and . denote the ship, the flooded water, and the forcing roll
moment, M and m the masses of the ship and of the flooded water, x the radius of gyration,
¢ the gravitational acceleration, g, = (2., Yc,) the location of the center of gravity of
the flooded water G, g, = (7p,,ys,) the location of the center of buoyancy of the ship
B,. Ag + A sin(Qt + ¢) the forcing roll moment, and v the damping coefficent, respectively.
s 410 Y g ping , TCS] y
We can obtain model equations for the coupled motion by sutstituting eq.(1) into Lagrange’s

equations of motion
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where the Lagrangian L = K — P, K = K, + K,,, and P = P, + P, + P, respectively.

On the above assumptions, €, and @, correspond to the center of the cross-section of the

0
ship under the still water surface and that of flooded water, respectively. Thus the necessary
coordinates in eq.(1) can be geometrically determined. In addition, we can express the model
equations of the first order form de/dt = F(t,x,0) where £ = (¢, ¢, \, X) and o denotes a

set of parameters.
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3.2 Bifurcation analyses

The mathematical model produces complicated bifurcation phenomena. Then we obtained
some 2-parameter bifurcation diagrams in the (2, A;) plane using the Newton method[6].
Figurce 5 shows bifurcation curves of the ‘period 17 and ‘period 2 solutions when the ratio of
the amount of flooded water to the total weight of the ship w/W=0.19 and the geometrical
conditions of the ship are set to almost the same as a ferry model used in the experiments[1].
We can sce that the ‘period 17 and ‘period 2’ solutions coexist in some regions. Figure 6 shows
the phase portraits of them when 2=0.9 and A;=0.02. This coexistence was also found in the

experiments[1].
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Fig.5 Bifurcation diagram, Case 1
(Geometrical conditions of the ship are close to the same as the ferry model[1]. Q
and A; are represented in the real ship scale. GV: saddle-node (solid line), IV:
period doubling (dashed line), and HY: Neimark-Sacker (dash-dotted line). N

‘period N'.)

Figure 7 shows bifurcation curves of the ‘period 1°, ‘period 2’ and ‘period 3’ solutions when
the ratio of the amount of flooded water to the total \ir(‘,igllt of the ship w/W=0.15 and the
geometrical conditions of the ship are set to almost the same as the box-shaped model used
in the experiments[1]. Figure 8 shows variation of the stroboscopic plots of the roll angle ¢ at
(= Qt+1)=0 and variation of the LiéLpun()v exponents, and an example of the phase portrait

of the chaotic solution, when Q is fixed to 0.45 and A, is increased. In fig.7, chaotic solutions
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were found in the closed curves of the Neimark-Sacker bifurcation of the ‘period 17 and ‘period

2.
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Fig.6 Coexistence of ‘period 1’ and ‘period 2’
(Case 1. 9=0.9, A;=0.02 in fig.5)

Fig.7 Bifurcation diagram, Case 2
(Geometrical conditions of the ship are close to the box-shaped model[1]. Q and A4,

arc represented in the experimental scale. GV: saddle-node (solid line), I'V: period
doubling (dashed line), and HY: Neimark-Sacker (dash-dotted line). N: ‘period
N) '
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(a) Variation of stroboscopic plots of the

roll angle ¢(to+mT) (T: wave period,
m=1,2,---,100)

(b) Variation of the Liapunov exponents
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(¢) Phase portrait of the chaotic so-
lution at A;=0.51875

Fig.8 Variation of the stroboscopic plots of the roll angle ¢, the Liapunov
exponents A, and the phase portrait of the chaotic solution (Casc 2.
Q=4.5 in fig.7) |

4 Conclusions

Some experimental works have demonstrated that a flooded ship can exhibit nonlincar
roll motion, including chaotic one, in waves. Obscrvations of the experiments suggested that
nonlinearly coupled motion of roll and flooded water dominates these complicated phenomena.
Then we derived the mathematical model for the coupled motion and investigated bifurcation
of periodic solutions. The results showed that chaotic solutions were found in the closed curves
of the Neimark-Sacker bifurcaiton. In order to understand mechanism of nonlincar response

found in experiments, we need further study on bifurcation using this model.
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