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On Fricke groups corresponding to real lattices

B[R BER (Ryuji ABE)

1 Introduction

We consider Teichmiiller spaces of the closed torus and the ohce punctured torus..
This is a report of our results obtained in a series of papers where we investigate explicit
relations between these spaces. In [Abl] and [Ab2] we found Fricke groups corresponding
to real lattices and constructed holomorphic mappings between once punctured and closed
tori determined by these groups and lattices, respectively.

We use throughout the convention that an element A in PSL(2,R) represents the
Mobius transformation induced by A, L.e.,

az+b
cz+d

if A= ( ¢ 2) € PSL(2,R) then A(z) =
cC . a

We consider a Fuchsian group G consisting of Mobius transformations of PSL(2, R) and
having the following properties: (i) G is discontinuous in the upper half-plane H, (ii)

Every real number is a limit point for G, (iii) G is finitely generated.

Definition 1.1 A Fuchsian group I' = (A, B) for A, B € PSL(2,R) is called a Fricke
group if A, B are hyperbolic and tr [B~1, A7!] = -2.

In the definition above I' = (A, B) is the free group generated by A, B and tr denotes
the trace of a matrix. We consider a once punctured torus which is uniformized by a
Fricke group I' and take a normalized form for the presentation of I' (see §4). By using
the quantities X = tr A,Y = tr B and Z = tr AB, the above description of the Fricke
group is characterized by X2+ Y? 4+ Z? = XY Z and X,Y,Z > 2. Moreover, we obtain
the following theorem (see [W]).

Theorem 1.1 The Teichmiller space Ty of the once pdnctured torus is the sublocus of

X2+Y?24+22=XYZ with X,Y,Z > 2.
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In this paper we denote a point in the Teichmﬁller‘ space 71,1 of the once punctured torus
by a triple (X,Y, Z) and we call it the (X,Y, Z) coordinates.

We describe a closed torus by R, = C/I';, I', = {m + n7 | m,n € Z}, then the
Teichmiller space T of the closed torus is the upper half-plane H, i.e., a point in the
Teichmiiller space 77,0 of the closed torus is denoted by 7 € H. (See [IT], etc.) We call it
the 7 coordinates. ‘

It is well-known that theoretically we can identify Teichmiiller spaces 7 o and 77,,. For
example in [W] the existence of a map from the (X, Y, Z) coordinates to the 7 coordinates
is described. But it does not give explicitly a holomorphic mapping between a once
punctured torus determined by (X, Y, Z) and a closed torus determined by 7. Our problem
is to construct such a holomorphic mapping.

Since the two Teichmiiller spaces 7 and 7;; are too large to find felations between
them directly, we introduce the three subsets of T10: Ly = {r € H||7| > 1 and Re () =
0}, Ly ={r € H||r|=1and —1 < Re(r) <0} and Lz = {r € H ||r| > 1and Re (1) =
—%} These sets are characterized by the fact that 7 € L; U Ly U L3 if and only if 7 is a
closed torus associated to a real lattice (see §2). Define the three subsets of 71 ;: M; =
(XY, 2) €T |2< X <Y <Z=XY/2}, My = {(X,Y,Z) €Tia |2< X = Y < 7}
and M3 ={(X,Y,Z2) € T1,|2< X <Y = Z}. Then we obtained the following theorem
in [Abl]:

Theorem 1.2 There exist correspondences of the sets: Ly < M,, L, & M,, Ly < M.

Our aim is to construct a holomorphic mapping between elements of L; and M;, [ =1,2,3
based on these correspondences.

We summarize our results. We represent a point in the upper half-plane H by z and a
point in the complex plane € by u. We call H the z-plane and € the u-plane. Then a once
- punctured torus (X,Y, Z) and a closed torus 7 can be identified with fundamental domains
in the z-plane and the u-plane, respectively. For special two points (3,3, 3), (2v/2,2v/2,4)
in 7y, and p = 5™ i in 71,0, holomorphic mappings between once punctured tori and
closed tori can be constructed explicitly, which come from [C1], [C2]. A holomorphic

mapping from (3,3,3) to p is given by
1-J(z) = ¢/(u)? = 4p(u)’ +1, (1.1)
and a holomorphic mapping from (2v/2,2v/2,4) to i is given by

Ji(2) = p(u)* and ¢'(u)* = dp(u)® — 4p(u), | (1.2)
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In this figure we use another coordinate system [a,b,c] defined by a = X/YZ,
b=Y/XZ and ¢ = Z/XY because the space 71,1 represented by [a,b,c] is much
easier to see than by (X,Y, Z). Two points (3,3,3) and (2v/2,2+/2,4) are identified
with [, 1, 2] and [L, §, 3], respectively. It is easily checked that 71,1 = {[a, b, ] l a-+
b+ c=1with a,b,¢ > 0}, My = {[a,b,c] € T11 |0 <a<bec=1}, My={[a,b,c] €
’7},1|0<a:b_<_c§ %} and Mg:{[a,b,c]671,1|0<a§b:c}.

Fig. 1.1

where p(u) are Weierstrass’ pe-functions defined by the above equations, J(z) is the
modular function and J;(z) is a function having similar properties to J(z) (see Proposition
3.1). We will show in §3 the reason why the relation (1.2) gives a holomorphic mapping
between a once punctured torus and a closed torus. Generalizing the relations (1.1) and

(1.2), we obtained the theorem fof the case L; and M; for [ =1,2,3:

Theorem 1.3 For any (X,Y,Z) € M, there uniquely exists an element T € L, satisfying
the following conditions: let £, < x, < T3 be three real roots of p(z) = 42> —go(7)x —g3(7),
then a holomorphic mapping between (X,Y,Z) and 7 is given by a relation

KJ(U): (22 — 1) (xv,2)(2) + 22, (1.3)

where p(u) is Weierstrass’ pe-function defined by p'(u)? = 4p(u)® — go(7)p(u) — g3(7) and

Jixv,z)(2) is a function having similar properties to the modular function J(z).

Theorem 1.4 For any (X,Y,Z) € My, | = 2,3 there uniquely exist an element 7 € L
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and P such that a holomorphic mapping between (X,Y,Z) and 7 is given by a relation

' P 1-P
+ ;

Jxyz(z) 3

where p(u) is Weierstrass’ pe-function defined by

() =4 (p(w) = 3P - 1)) (plu) - (S5 +2VP)) (pl) - (S5 —2vFi)),

Jix,v,2z)(2) is a function having similar properties to the modular function J(z), 7—4+/3 <
P<LlifreLlyand P>T7+4V3 if r € Ls.

p(u) = Jixy,z)(2) — (1.4)

For proofs of Theorem 1.3 and 1.4 we refer the reader to [Ab1] and [Ab2], respectively.
We will show in §5 precise definitions of J(xy,z) in order to make their meaning clear. A
construction of that mapping is one of important parts of our proof.

Finally, we note that the relations (1.1), (1.2), (1.3), (1.4) are closely related to sym-
metries of fundamental domains corresponding to a closed torus and a once punctured
torus, that is, symmetries are reflected in the orders of p(u), J(2), Ji(z) and Jxv,z)(2)

and that these relations give cusp forms of weight 1 for associated Fricke groups (see

[Ab3)).

2 The functions p, J and real lattices

In this section we recall fundamental facts concerning Weierstrass’ pe-function and the
modular function. For detailed arguments and proofs we refer to chapters 3 and 6 of [JS].

For wy,w, € €, we define a lattice £ by
Q = Q(wr,wz) = {nwy +nowy | n1,n9 € Z},
and we call {w;,w;} a basis for  and a point in Q a lattice point in C.

Definition 2.1 We call the following series Weierstrass’ pe-function

p(u)=i+ > (ﬁ——l—) for all u € C.

R w2
From the definition, it follows immediately that p(u) depends on the lattice 2 and is an
even function which is analytic on €\ and has a pole of order 2 at each w € §). Note
that p(u) is doubly periodic with respect to the lattice 2. We define
1

1
=g =60 Y = and gz=gs(Q) =140 Y —.
WEQWHO w wER,w#0 w
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If @ = Q(1,7) we can write

1
and g3 = g3(t) =140 > !

@p=g()=60 Y —— —_—e.
(m + n7)* (mim)2(0.0) (m + nt)8

(m,n)#(0,0)

Note that go(p) = gs(z) = 0, where p = 3™, Moreover, we can give characterizations of
the function p(u) and the lattice  when ¢»(2) and ¢3(§2) are real. We represent by Z the
conjugate of z € C. o

Proposition 2.1 The following conditions are equivalent:
(i) 92(2),95() € R.
(ii) o defined by using the lattice Q satisfies p(u) = o(u) for allu € C.
(iii) Q is a real lattice, ie., Q= {w|we Q} = 0.
In order to characterize real lattices we introduce the following sets:
Li={reH]||r|>1 and Re(r)=0},

Lzz{rem{

|r|]=1 and — % <Re (1) < 0},

1
|| >1 and Re(7) = ——2—}
Let 7 be an element in L;U L. If we take p > 0 or g = ri with r > 0 then Q = Q(u,ur) is

a real lattice. Let 7 = €Y with 71'/2 < 8 <27/3 be an element in Ly. Then {} = Qp, pr)

L3={T€]HI

-T—0

is a real lattice, where p = re'™z or pu = re=3i with r > 0. Conversely, any real lattice
) can be represented as above, because real lattices are classified into two cases: one is a
rectangular case, i.e., 7 € L; and the other is a thombic case, i.e., 'r € Ly U Ls. (See Fig.
2.1.) We call a lattice Q defined by 7 € L; as above a rectangular lattice and a lattice {2
defined by 7 € Ly U L3 as above a rhombic lattice.

Definition 2.2 We define the modular function J(1) by
g2(7)°
J(r) = for all 7 € H.
)= G - 2y

The properties of the modular function which we will use are the following:

Proposition 2.2 (i) J is invariant under actions of the modular group PSL(2,Z),
i.e., J(T(1)) = J(7) for all 7 € W and T € PSL(2,Z), where T(7) is a Mdobius

transformation.
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(iii)

Lattice points are represented by e. (i) The case 7 € Ly and g > 0. (ii) The case
T € Ly and p = re"=" with r > 0. (iii) The case 7 € L3 and p > 0.

Fig. 2.1

(i1) The mapping J : /L — C€ is holomorphic on H.

(iti) J maps L onto R where L = L1 U Ly U Ls. Especially, J(¢) =1 and J(p) = 0.

(iv) J maps F onto C where F = {r ¢ H | |7| > 1 and |Re (1)|< 3} is a fundamental

domain for the modular group.

By using g2 and g3, we can introduce an important differential equation connecting

p(u) and '(u):

Proposition 2.3 ©'(u)? = 4p(u)® — g2p0(u) — gs.

Note that p, g2 and g3 depend on a lattice (2.

Proposition 2.4 Let Q = Q(wy,w;) and w3 = wy + w,. Then we have o (Fw1)= p'(Gwa2)

= go'(%wg) = 0.

Points %wl + (nyw1 + naws) for all ny,ny € Z and | = 1,2, 3 are called ramification points

of .
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Proposition 2.5 We define ¢; = p(3w;) for | = 1,2,3. Then e, eq,e3 are mutually

distinct.

That is to say, if we take a lattice £, the values go(€2) and gs(2) define a cubic polynomial
p(z) = 42° — gz — g3, which has distinct roots. Conversely, we obtain the following

assertion.

Proposition 2.6 Let p(z) = 42> — ¢,z — ¢3 for c3,¢c3 € € be any cubic polynomial with
distinct roots. Then there is a lattice Q with c; = g2(Q) and ¢ = g3(R). Precisely,

(i) ife; =0, c5 # 0 then Q = Q(u, pp), where u € C is determined by (1/u®)gs(p) = cs.
(%) if ca #0, c3 =0 then Q = Q(p, pi), where p € C is determined by (1/pu*)ga(i) = c.

(1) if c2 # 0, c3 # 0 then Q = Q(p, u7), where p is any element of C\{0} and 7 € C
is determined by J(1) = c3/(c3 — 27¢3).

We use this proposition in order to define real lattices.

3 An example

Récall that we represent a point in the upper half-plane H by z and a point in the
complex plane C by u. We call H the z-plane and € the u-plane. Let I' be a Fricke
group associated with a once punctured torus (X,Y,Z) € T;;. Then I' determines a
fundamental domain in the z-plane, which can be identified with the once punctured
torus (X,Y,Z). Let I', be a lattice in the u-plane for 7 € T;o. Then a fundamental
domain for I'; in the u-plane can be identified with the closed torus 7.

We consider the point (21/2,2v/2,4) in 7;,. Before we show a construction of a
holomorphic mapping between a once punctured torus and a closed torus, we state fun-
damental domains in the z-plane for the Fricke group associated with this point.

As a repfesentation of (2\/§,Zﬂ, 4) we take I'; = (A;, B;) with A; = ( (1) 2:/1:?-)
and B; = ( ‘_/f_ \_/%) and define C; = By A7 Then C;BiA; = ( o "i‘l/i . One
fundamental domain is a quadrilateral whose opposite sides are identified by actions of

A; and B; (shown in normal outline in Fig. 3.1),

z+3—4—\/§l >¥, lz+\/T§| >?, —ﬂSRe(z)SO}.,

D,(T;) = {z €M '
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Fig. 3.1

another is a hexagon whose sides are identified by actions of A;, B; and C;B;A; (the
shaded part in Fig. 3.1).

DTy = {z€H ||z+2v2] 21|z +V2| 21,

lz] > 1, |z = V2| > 1, —%SRe(z)<¥},

We call them the quadrilateral fundamental domain and the hexagonal fundamental do-

main, respectively.

Theorem 8.1 The once punctured torus (2\/5,2\/5, 4) € T11 is mapped to the closed

torus i € T1 o holomorphically by using relations
p'(u)* = dp(u)’ — 4p(u), 6y
Ji(z) = p(u)’. (3.2)
The function J; in (3.2) is (ieﬁned as follows:
Proposition 3.1 We’can construct a function J; which satz’sﬁes

(i) J; maps L; onto R where L; = LiyULpULis and Ly = Ly,

Ln-—-{relﬂi 7] =1 and —%_Q—SRe(T)SO},
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Li3:{T€H

|7| > 1 and Re (T \/7_}
Especially, J;(ic0) = 0o, Ji(i) = 1 and J;(p;) = 0 where p; = ei™,

(ii) J; maps F; onto C where F;={r € H | |r| >1 and ‘Re (1) |< ‘/_}

(i1i) The mapping J; : HL — C is hélomorphz’c on H.

For the proof of this proposition, we refer to Chapter III in [H].
We introduce two notations: one is puBR = {uu | v € R} for 4 € € and the other is
p(pBR) C p2R U {oo} for py,ps € € which means p(pqu) € R U {oc} forallu e R.

Proposition 3.2 (i) If Q is a real lattice, then

p(R) C RU {00} and p(:R) C RU{o0}.

(it) If Q@ = Q(p, pi) for some p € € is a real lattice, then

p(e?'R) C 1R U {00} and p(e ¥ 'R) C iR U {00}

(iii) For the lattice Q = Q(v,vi) with v > 0, we have

p(R+ 1) CRU{oo}, p(R-— i) C RU {0},
p(tR + %1/)) CRU{o}, p(tR - %l/)) C RU {oo}.

These assertions are proved by using properties of real lattices, especially, Proposition 2.1
(ii).
. 0 -1
Proof of Theorem 3.1. We take I'; = (A, B;) with A; = ( ) 2\/5) and B; =
( V2

1 \_/% ) as a representation of (21/2,2v/2,4). Recall that two fundamental domains
for I'; in the z-plane are as shown in Fig. 3.1. By Proposition 2.6 (ii), the relation (3.1)
determines the lattice O = Qu, ui) in the u-plane where p satisfies (1/u*)g2(7) = 4. As
92(7) > 0, we can write p = [,u]ez , 7 =0,1,2,3. Therefore we obtain = Q(u, ui) =

Q(|gl, |¢]?) which is a real lattice. By the relation (3.2) the point z = i00 is mapped to a
lattice point of the u-plane because of J;(i00) = 0o and p(ug) = oo for ug € O = Oy, pi).
We can assume without loss of generality that the image of z = ioo by (3.2) is the
point v = 0. Suppose that J; has a value ¢¢ € € with ¢y # 1. Since for each ¢ € C,
¢ # ey, e, €3,00 the equation p(u) = ¢ has two simple solutions, for J; = ¢, we obtain four

points determined by the relation (3.2) in the u-plane. The hexagonal fundamental domain
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(i) (i)

(i) The segments L; (ico — 1 — p; — i00), L; ++/2, L; — /2 and L; — 24/2 are
mapped by the relations (3.1) and (3.2) to the segments (0 = 1|u| — {u|(1-1) —
0), (0 — —luli = —4lul(L+ ) > 0), (0 = —lul > ~3jul(1 = i) » 0) and
(0= Zluli = Zlpl( +14) —0).

(ii) The square determined by +1|u|(144),+1]x|(1—1) is the image of the hexagonal
fundamental domain by the relations (3.1) and (3.2).

Fig. 3.2

Dy, (T;) is a 4-sheeted covering of the domain Fj, so we can take four points which attain
J; = ¢ in the hexagonal fundamental domain. Therefore we can obtain correspondences
between these four points in the z-plane and the four points in the u-plane. Now we
consider the case where J;(z) is real. From Proposition 3.1 (i) we decompose arguments
into the following three cases. '

(I) Ji(z) 2 1, i.e., z € Lj.
Set Ji(z) = c then by using (3.2) we have p(u) = ++/c. We can take a point u with
p(u) = y/c on the line R because p(R) C RU{oo} and p(u) is positively large if u € R is
small. In the same way we can take a point u with p(u) = —/c on iR. In the relation (3.2)
if J;(z) = 1 then p*(u)—1 = 0 which gives ¢'(u)? = 4p(u)>—4p(u) = 4p(u)(p(v)?-1) =0,
so the point u corresponding to z = 1 must be rarrﬁﬁcation points %lu]e%”, 7=0,1,2,3
in the u-plane. Therefore we can take segments {t|p|e%” |0<t<1},7=0,1,2,3 as
images of L;; by the mapping defined by the relations (3.1) and (3.2).

(II) Ji(2) <0, i.e., 2 € Ljs.
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Set Ji(z) = c then by using (3.2) we have p(u) = ++/—ci. By Proposition 3.2 (ii) we
get p(e”T'R) C iR U {o0}. If u=te"% and ¢t € R is small, p(u) = i|p(u)| and |p(u)]
is large, so we can take a point u with p(u) = y/—ci on the line e T'R. By using the
same argument we can take a point u with p(u) = —/=ci on e%*R. In the relation (3.2)
if Ji(p:) = 0 then p(u) = 0 which gives ¢'(u)? = 4p(u)(p(u)? — 1) = 0, so the point u
corresponding to z = p; must be ramification points §|u|e(%+%)”, 7 =0,1,2,3 in the
u-plane. Therefore we can take segments {t|,u|e(§+%)” |0<t< 32Q},J =0,1,2,3 as
images of L;3 by the mapping defined by the relations (3.1) and (3.2).

(III) 0 < Ji(2) £ 1, t.e., 2 € Lj.

Set J(z) = c then p(u) = £+/c. Since the mapping defined by the relations (3.1) and (3.2)
‘is conformal on €/, we obtain Fig. 3.2 (i) by Proposition 3.2 (iii) and the arguments of
(I) and (II).

From Proposition 3.1 and the symmetry of the domain F;, the image of the hexagonal
fundamental domain D(T;) by the mapping defined by the relations (3.1) and (3.2) can
be represented by the square including 0 as in Fig. 3.2 ’(ii). Then we can show without
loss of generality the actions of A; and B; as in Fig. 3.2 (ii) from the identification of
the sides of Dy(L';). Moreover, the quadrilateral fundamental domain D,(I';) is mapped
to another square in Fig. 3.2 (ii) which is determined by the lattice @ = Q(u, p7) in the
u-plane. These facts imply that there exist the correspondences p < A; and i & B;

which we used in order to show the correspondence i < (2v/2,2v/2,4) (see §3 in [Abl]).
O

4 Introduction of fundamental domains

In order to construct holomorphic mappings between once punctured tori and closed tori
in [Ab1] and [Ab2], it was very important to take proper fundamental domains for Fricke
groups. In this section we will introduce fundamental domains for Fricke groups in-M; for
1=1,2,3.

We begin by recalling M, M;, M, and Ms defined in [Abl]. M is a fundamental
domain for the action of PSL(2,Z) on Ty :

1
M:{(X,Y,Z)GTI,I 2<X§Y§Z§§XY},

and My, M,, M3 are the subsets of M defined by

M, = {(X,Y,Z)EM ’ Z=%XY}
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x/ 2 : 2
- {(X,Y,Z) ‘ (X,Y,Z) = (u,z,/l_*_az,M) for aZl},
(83 o

M, = {X,)Y,Z2)eM | X=Y}

{(X,Y,Z) l (X,Y,Z) = (2”}2 chitd

BB

]

,2+ﬁ2) for 15[33&},

My = {(X,Y,2)eM | Y =2}

2 2 2
_ {(X,Y,Z> (X,Y,Z>=(”f”,”27,”2”’) foerl},
v v vy

where parameters o, 3 and 7 are introduced by setting ¥ = o X,Z = X and Y = 71X,

respectively.

Definition 4.1 A Fricke group T' is called a special Fricke group if the associated coor-
dinate (X,Y,Z) of I is in M.

We recall some facts of special Fricke groups, which are due to [Sc]. Let (X,Y,Z) be an
associated coordinate of a special Fricke group I' = (A, B). Then A and B are given by

—k _Z _LY
A:(g X)andB:<YyX kz)”)
¥ X -5 X

for some £ > 0. In particular a fundamental domain for T = (A, B) is obtained by

removing from the region

{z:x—!—iy ‘ —-k(—;——-}—/{%) §$<k(%+)—;)£z—) and y>0}
the isometric circles for the Mobius transformations A, A=, B,B~!,C = B71A"! and
C~'. We apply these facts to (X,Y,Z) € M; for [ = 1,2, 3.
(I) the case (X,Y,Z) € M.
We obtain a special Fricke group ', = (A,, B,) with

A = 0 -1 4B — V1+o? —-a f k_?\/1+a2
*T\1 o S FeT 0 VItaer) T T e

Then we get

242 1+ a2 -1 g VA
— R-14-1 _ o — o
C. = B'A: _<\/1+_a2 Vi ) and C.B, A, ( L )
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By using the basic facts cited above, we represent a fundamental domain for I',:

JIT a2 JIF aZ
Dy(Ty) = {zelﬂi"z—i—z——l——i———g—Zl,lz—{—‘l—*—a Zl,
a [0 (a4
V1 2 1 2 2 . 9 2
|z| > 1, LYt - ——ﬂgRe(z)<——-ig——}
o a  oyl+a? av1+o?

which is a hexagon whose sides are identified by actions of A,, B,,CyB,A, and is called
the hexagonal fundamental domain. We can introduce another fundamental domain which
is a quadrilateral whose opposite sides are identified by actions of A,, B, and is called
the quadrilateral fundamental domain:
N 1+ 202 S 1

Z 9y

20v/1 + o? 20¢/1 + o?

V1 2
s[> e, ~ T < Re(2) < 0F.
2V1 + o? 2v/1 4 a? o’

The quadrilateral fundamental domain (shown in normal outline in Fig. 5.1) can be
identified with the once punctured torus (X,Y, Z).

(IT) the case (X,Y,Z) € M,.
In this case a special Fricke group I's = (Ag, Bg) is determined by

0 -1 2 —1) 2 + 32
Ag = 2 and Bs = B for k= .
o= (Ve ) mam=(5 g

Then we have

2 | 1 426
Cﬁ=BglA;1=(ﬂg1. f) and oﬁBﬁAF( 01 K )

By using the basic facts cited above, we represent a fundamental domain for I's:

D,(T.) = {z cH l

D.(T'g) = {zemi’ z+ﬁ+%121 +%|21 +3 2%, 2] > 1,
=151, [sp- 3|5 5 -3 L<re<p+3),

which is a octagon whose sides are identified by actions of Ag, Bg, Cg, Cs BgAp and is called
the octagonal fundamental domain. We can introduce another fundamental domain which
is a quadrilateral whose opposite sides are identified by actions of Ag, Bs and is called the

quadrilateral fundamental domain:

L2
26’ 8

S L
26’

1
z+— 2+ —=|>

25| gRe(z)go}.

D,(T) = {z cH ‘
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The quadrilateral fundamental domain (shown in normal outline in Fig. 5.2) can be
identified with the once punctured torus (X,Y, Z).

(III) the case (X,Y, Z) € Ms.
A special Fricke group I, = (A,, B,) is determined by the following A, and B,,

, 0 =1 4 9ny2
sz( 1+272)and37=(v 7>fork=1+7.

I =2 -7 7 7
Then we get
ey 1442 ~ -1 2+4'v
C,=BA7" = ( :;, .y ) and C,B,A, = ( 0 _1 ) .

In the same way as in (II) we obtain a octagon whose sides are identified by actions of

Ay, By, C,, CyB, Ay

D,(Ty) = {z € H |

1
Y

1
|Z'—1|>—'a
)7

We also have a quadrilateral whose opposite sides are identified by actions of A,, B., and

which is identified with the once punctured torus:

1
272

1 1
2 = lz+1>1, ——1—-};—<Re(z)<0}

D(r) = {- |
We call D,(I',) the octagonal fundamental domain for I', and D,(I',) the quadrilateral

fundamental domain for I, (shown in normal outline in Fig. 5.3).

5 Investigation of fundamental domains

In this section we will introduce subregions of fundamental domains obtained in §4 and

will define the mapping J(x,y,z) in Theorem 1.3 and 1.4 by using them.

5.1 The case M,

In order to construct the holomorphic mapping we use the following modified fundamental

domain D(T',) (the shaded part in Fig. 5.1):
3V1+a?

«

2v/1 + a?

(07

+ V1 + o

«

1
D@J=%em . S .y
(87 (8%

-
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_3Vito? _2V140? VifaZ
1 2 1 3v1 2 1 2
o1, | o VAE? L VItal gy VIt }
: (84 (8% (04 o

We introduce the following notations:

V1 2 1 V1 2
p4 Y2te > -, |z121,——1“—3Re(z)so}
(8] (8%

F;:{zelml

which is a subset of D(T'y),
( Vi4+a? 1 ) ( a 1 )
n={--—/——7-,— and C =\ 5 .
a o« V1i+o?' V1+a?
Theregion F (shown in broken line in Fig. 5.1) is a quadrangle with angles 0, 7/2,7/2, 7 /2.

The holomorphic mapping used in Theorem 1.3 is constructed as follows:
Proposition 5.1 We can construct a function J, which satisfies

(i) Jo maps L, onto R where Ly = Loy U Lo U Loz U Loy and

La1=L1,La2={z€H |z| =1 and —

V1+a?

o
<Re(z) <0,
ral s e(z)—}

1 V1+ a2 a }

=— and — <Re(z) L -

« o - V1 4+ o?

La3:{Z€HI 'Z+

o
N
La4={zelﬂl |2] > 1 and Re (z) = — ;—a}.

Especially, J,(100) = 00, Ju(i) = P for some P >0, J,(¢) =0 and Jo(n) = —1.
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(ii) Jo maps F, onto © where

Vizez| 1 Viter| 1
Faz{zelﬂi Lo yite > |2l >1, |2 — Ll P
(8] (04 [0
2 2
_Vitae gRe(z)g”Ha}.
[0 [0

(i) The mapping Jo : HL — € is holomorphic on H.

5.2 The case M,

We begin by introducing the following notations:

V,@l = (_%’%) 7Vﬁ2 = (an)aVﬂB - (ga g) .

The region Fj (shown in broken outline in Fig. 5.2) is a quadrilateral with angles
0,7/2,0,7/2.
Note that we change the octagonal fundamental D,(I's) into

s
=
¢}
O
IA
N ®
N —

21,

z+ﬂ+%‘21 3 z+% >

| ELICRY TR

3
z+ 0+ =|>

D@@::{zeﬂ 3

1 1
B’ B’

|z| > 1, |z = 8] > 1,

then D(I') (the shaded part in Fig. 5.2) is also a fundamental domain for I's.

Now we construct a holomorphic mapping from H to C which is used in Theorem 1.4.
Proposition 5.2 We can construct a function Jz which satisfies the following conditions:

(i) Jg maps Lg onto R where Lg = Lgy U Lga U Lgz U Lgy and
B

)

Lm:{zelﬂi

Zg- and Re(z):——g—},

z+—1- Zl and Re(z)z—%}.

Lgy=¢ze H

. { | 8= 5

Especially, Js(i00) = 0o, J3(Vs3) = P for some P > 0, Jg(Vps)
-1.

0 and Jﬁ(Vﬁl) =
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e L T I e R S W

A

[ mm = = = B e e = =i m o

PO

(iii) The mapping Js : Bl — C is holomorphic on H.

5.3 The case Ms;

We introduce the following notations:

1
|Z|>1 —I—Q—’ﬁSRe(Z)SO},

1 1
V’Yl = (_1 - 2_'72’ W) Vi = (_1,0)7‘/:73 = (0’1)'

The region F, (shown in broken outline in Fig. 5.3) is a quadrilateral with angles

0,7/2,0,m/2. Changing the octagonal fundamental domain D,(T',) into

1 1 1 1 1
D(l,) = {ZGH‘ z+3+ =2, |2+24+ >1, z+1+ 5|12 =
Y Y Y Y
1 1 3 1
z+1>— |zl >1, |z—=1|> —, —3———<Rez <1+ —-—}
| | 5 |2 | | 5 % (2) %
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[N UG R - W

Fig. 5.3

we get that D(T.,) (the shaded part in Fig. 5.3) is also a fundamental domain for I',.
The mapping used in Theorem 1.4 is defined as follows:

Prop051t10n 5.3 We can construct a function J, which satzsﬁes the following conditions:

(i) J, maps L., onto B where L, = L,; U L,y UL,3U L4 and
L,={z€H]||2|]>1 and Re(z) =0},

L,={z€H]||z|=1 and —1 < Re(z) <0},

1 1
L73={zE]BI z+1 272=med —1—2—725Re(2)5‘1}’
1 1 1
b= {rem] |2 7y ond Re)=-1- 5}

Especially, J,(ic0) = 0o, J,(V,3) = P for some P >0, J,(V,3) =0 and J,(V,;) =
-1.

(i) J, maps F. onto C where

A 1 1 1
P = H > 1 > -
~ {Z € 972 | = 272a |Z| ) 292 |~ 242

1 1
1< <14 —

(iii) The mapping J, : B — € is holomorphic on H.
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