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"ON AN w-INCOMPLETE DUCK AND ITS APPLICATION

K1vyoYUKI TCHIZAWA
o 2 F Z-
Dept. of mathematics, Musashi Institute of Technology

A bstract. Introducing a parameter newly to the singular perturbation problem,
an w-incomplete duck solution; a singular w-limit of the duck solution for the pa-
rameter will be discussed. It will become clear that the winding number for one of
the solutions goes to infinity at that limit. Furthermore, the problem :when cer-
tain coefficients have different infinitesimals, what happens in the equation? will be
solved.

1.INTRODUCTION.

The explicit duck solutions (or simply ducks) were constructed by Benoit[4] but
not include a parameter in the differential equations. He showed, in his paper,
that if the difference of each the winding numbers associated with the ducks is
more than 3/2, there exists a duck which is not S* (S! is a smoothness class in
nonstandard analysis). It is important to remark that this solution could not be
constructed explicitly yet. The explicit w-incomplete solution in the local model
of the FitzHugh-Nagumo(FHN) equation will be discussed, however, this solution
is the exact solution in the first approximation of this model. The solutions very
near by this exact solution are winding so many times; the winding number goes to
infinity as the parameter tends to infinity. In Section2 and Section3, introducing
a parameter in the differential equations, the w-incomplete ducks will be discussed
as a singular limit of the ducks for the parameter. In Section4 and Section5, this
paper will treat of the FitzHugh-Nagumo equation and, in Section6, analyze its

‘w-incomplete duck in the first approximation of the ”local model” ([4], [18]).

2. PRELIMINARIES.

Let consider a constrained system(2.1):

dz/dt = f(z,y,2,u),
(2.1) dy/dt = g(z,y, z,u),
h($7 y7 Z7 u) - 07
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where u is a parameter (any fixed) and f,g,h are defined in B3 x R!. Furthermore,
let consider the singular perturbation problem of the system (2.1):
d'x/dt = f($7y’ ’z’ u)’

(2.2) dy/dt = g(z,y, 2,u),
edz/dt = h(z,y, z,u),

where e is infinitesimally small.

We assume that the system (2.1) satisfies the following conditions (A1) — (A5):

(A1) f and g are of class C* and h is of class C2.

(A2) The set S = {(z,y,2) € R?: h(z,y,2,u) = 0} is a 2-dimensional differen-
tiable manifold and the set S intersects the set _
T = {(z,y,2) € R®: Oh(x,y,2,u)/0z = 0} transversely so that the set PL =
{(z,y,2) € SNT} is a 1-dimensional differentiable manifold.

(A3) Either the value of f or that of g is nonzero at any point p € PL.

Let (z(t,u),y(t,u), 2(t,u)) be a solution of (2.1). By differentiating h(z,y, z,u)

with respect to the time ¢, the following equation holds:
(2.3) hg(z,y,2,u)f(z,y,2,u) + hy(z,y, 2,u)9(z,y, 2,u) + h,(z,y, z,u)dz/dt =0,
where h;(z,y, z,u) = Oh(x,y, 2,u)/d%, i = x,y, 2. The above system (2.1) becomes
the following system: |

dz/dt = f(z,y,z,u),

dy/dt.= g(z,y, z,u),
(24) dz/dt = —{hz(z,y, z,u) f(x,vy, z,@)Jr

hy(2,y, z,u)g(z,y, 2,u) }/ ho (2, y, 2, u),

where (z,y,2) € S\ PL. The system (2.1) coincides with the system (2.4) at any
point p € S\ PL. In order to study the system (2.4), let consider the following
system: '

dr/dt = —h.(z,y,2,u)f(2,y,2,u),
(25) dy/dt - —hz($,y, 2, U)g(.’ﬂ,y,Z,’UJ,
dz/dt = hy(z,y, z,u) f(2,y, z,u) + hy(z,y, z,u)g(x,y, z,u).

As the system(2.5) is well defined at any point of R3, it is well defined indeed at
any point of PL. The solutions of (2.4) coincide with those of (2.1) on S\ PL
except the velocity when they start from the same initial points.

(A4) For any (z,y, 2) € S, either of the following holds;

(26) hy(.’E, Y, Z,U) # 07 hw(:c,y, Z,U) # Oa

that is, the surface S can be expressed as y = ¢(z,2,u) or z = ¥(y, 2,u) in the
neighborhood of PL. Let y = ¢(z,z,u) exist, then the projected system, which
restricts the system (2.5) is obtained:

dz/dt = —h,(z,0(x, z,u), z,u) f(z,p(z, 2,u), 2,u),
(2‘7) dz/dt = hx(:[;, SO('T’ z’ u)7 z? u)f(x’ (p(x’ Z, u)7 z’ u)+
hy(xa QO(JT,Z,U),Z,U)Q(:I?,QO(IL', 90(3:727 ’U;),Z,'U;)-
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(A5) All the singular points of (2.7) are nondegenerate, the matrix induced from
the linearized system of (2.6) at a singular point has two nonzero eigenvalues. Note
that all the points contained in PS = {(z,y,2) € PL : dz/dt = 0}, which is called
pseudo singular points are the singular points of (2.7).

Definition2.1. Let p € PS and pq(u), uo(u) be two eigenvalues of the linealized
system of (2.7), then the point p is called pseudo singular saddle if pi(u) < 0 <
pz2(u) and called pseudo singular node if p1(u) < pa(u) < 0 or pi(u) > pa(u) > 0.

Definition2.2. A solution (z(¢,u),y(¢,u), 2(¢,u)) of the system(2.2) is called a
duck, if there exist standard ¢1 < tg < o such that
(1) *(z(to,u),y(to, u), 2(to,u)) € S, where *(X) denotes the standard part of X,
(2) for t € (t1,tp) the segment of the trajectory (z(¢,u),y(t,u), z(t,u)) is infinitesi-
mally close to the attracting part of the slow curves,

(3) for t € (to,12), it is infinitesimally close to the repelling part of the slow curves,
and

(4) the attracting and repelling parts of the trajectory are not infinitesimally small.

Definition2.3. Let E be a set in R3. We call a point p is a é-micro-galaxy of I/
when the distance from p to E is less than exp(—n/§), where n is some positive
integer and § = ¢/a? (a is infinitesimally small).

Theorem?2.1(Benoit). In the system(2.1), if the following two conditions at a
pseudo singular saddle or node point;

(1) f(O,u) ~ h(O,u) ~ hy(O,u) ~ h,(O,u) ~0,
(2) 9(O,u) #£0,h(0O,u) #£0,h,,(0,u) #0, where O =(0,0,0) € PS,
are satisfied, the first approximation of the ”"local model”
dX/dt =pY + qZ,
(2.8) dY/dt = 1,
§dZ/dt = —(Z% + X),

is obtained, where p, q are constants and § ~ 0. Then, the explicit duck solutions
Yu:(w) in the first approximation of the system(2.2) can be constructed:

(29) 7/.ti(u) (t) - (_ui(u)ztz - 6/%(“)7 t: Ni(u)t)(i = 17 2)

Proceeding the following coordinate transformations,

u=X+27%+6p,

(2.10) v=Y—2Z/p,
z2=J,
(2.11) u = rcosb,

v = r8ind,
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the solution v, (¢) is transformed to (0,0, ;). Moreover, proceeding the coordinate
transformation

(2.12) - p=2dlogr,
the system ((2.13) is obtained:

d6/dt = 2z cos @ sinf + cos? 0/ — Spsin? 6,
(2.13) dp/dt = —2zcos? 0 + (1/u + 6p) cosfsin b,
dz/dt =—exp(p/6) cost + by,

and proceeding

(2.14) w = —cot 4,

the first equation in the equations (2.13) becomes the following Riccati equa,tion,
(2.15) Sdw/dt = w(w — ct)/u — 8p, (c : some constant

is obtained. Furthermore, applying time scaling and applying the certain cordinate
transformation w to W, the Hermite equations associated with v, (¢ = 1,2) are
obtained as the following:

(2.16) 6W — W + K;z = 0,t = 7/a, (o : any constant)(i = 1,2),

where K; is a positive integer and Ky = 1+ pa(u)/p1(u), Ko = 1+ pi(u)/pa(u).
See [4].

Definition2.4. The winding number N (1) of a duck ¢ is defined as follows:

(2.17) N@) = (1/27) /d) do,

where 1 is contained partially in the é-micro-galaxy of v,,.

The above Definition2.3 is based on the following fact. If € is fixed arbitrarily

and 7(t) is a duck near 7,(,(t), then the distance from (t) to 7,(,)(t) is within
exp(—n/6) in some neighborhood of the pseudo singular point. See [19].
It is said that a duck 1 (¢) has a jump if the shadow of it contains a vertical segment
and that 1 (¢) is long if it is in an infinitesimally small neighborhood at the pseudo
singular point. It can be proved that if ¢ is not long, the standard part of the
winding number N(1;) associated with p; is an integer. If the pseudo singular
point is node, it is positive. If the point is saddle, it needs some conditions such as
K; is poitive. The relation between N(%;) and K; (i = 1,2) is as follows.

Theorem?2.2(Benoit). If the duck 1, which is not long has 2 jumps,
N(41) = —[K1/2], and if the duck 1> has 2 jumps, N(13) = 0.
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3. DEFINITION OF AN w-INCOMPLETE DUCK.

In the system(2.2), making the following coordinate transformations (3.1) and
(3.2) successively;

x a?z
(3.1) (y) = ( ay ) J(a=~0,¢e/a® ~0)
z az .

X B (0,0)h5 (0,4)F/2 + (hyy (0, u)h (0,4) — hy, (0,1)2)32 /4
(3.2) (Y) = ¥/9(0,u) ) ;

Z —hy.(0,u)§/2 — h,,(0,u)Z/2

the following system(3.3) is obtained:

dX/dt = pY + qZ +£(X, Y, Z,u),
(3.3) dY/dt =1+n(X,Y, Z,u),
6dZ/dt = ~(Z2 + X) +((X,Y, Z,u),

where
P = 9(0,u)hz(0,u)(fy(0,u)h..(0,u) — f,(0,u)h,,(0,u))/2

+ g(0, u)z(hyy(oa u)hzz(oa u) — hyz(oa “)2)/2:
q= —h:l:(oa U)fz (07 U),
§=¢/a’

Here (XY, Z,uw)n(X,Y, Z,u) and {(X,Y, Z,u) are infinitesimal when X,Y and 7
are limited.

Definition3.1. In the system(3.3), if the followings (1) and (2):
(1) for any limited parameter u,
it satisfies the conditions (A1)-(A5) and has a duck,
(2) when the parameter u tends to infinity, one of the winding numbers
tends to infinity and the other tends to zero,
and the system does not have a duck as a singular limit,
are established, this solution is called an w-incomplete duck.

Definition3.2. A solution v(x,u) is called S! at a,
if there exists a real number b such that

'@b("nau) - w(y,u)
T—y

~b

(3.4)

7

for any z,y(z ~ a,y =~ a).
A duck is called an S*duck if it is S* in some neighborhood
of the pseudo singular point.



Theorem3.1(Benoit). In the first approximation of the system(3.3),
if py1(u)/pe(u) is positive (> 3) but no an integer, then all the S* ducks are expo-
nentially close to one of the two explicit ducks and there exists non S* ducks.

In the system(3.3), we assume that

(35) fy(oa u) = gu(Oau) = hyz (Oa u) - hyyu(o’ u) = hzzu(oa U’) = 0,

and that the following (1) or (2):

(1) he(0,u) = O(u) and f:(0,u) = O(1),

(2) f2(0,u) = O(u) and h;(0,u) = O(1),

where all the coefficients of higher order (more than 2) for u is negligible, that is,
only the coefficient q can take an unlimited number (q = c;u + o(1), a constant
c1 #0). Then, blowing up only the variable Z again;

(3.6) Z=Q1/uwZ,
the first approximation of the system(3.3) becomes the following:

dX/dt = pY + 1 Z,
(3.7) dY/dt =1, |
(§/uw)dZ)dt = —(Z2%Ju? + X),

where c; is limited (does not contain u) and §/u ~ 0. The explicit solutions in the
system(3.7) are

(38) 7ui(u) (t) - (_”i(u>2t2 - 6/’%(“’)7 tauﬂi(u)t)(i - 17 2)a

where p1(u), pe(u) (p1(uw) > pa2(u)) are the solutions of the characteristic equation
of the system(3.7) in case §/u ~ 0.

The above system satifies the conditions (A1)-(A5) and the solutions(3.8) satisfy
the condition (1) and satisfies the condition (2) when u — w in Definition3.1.

In fact, if ¢ = € 1/3, then the existence of such a duck is ensured. We choose
e=1/n(n=23,...) (u=1/n1/3), then 1/n'/3 > exp(—n/§) for any n (n > 2).
In the system for each any fixed n, let J = [AB] be a connected segment in R3,
where the solution which starts at A(or B) belongs to the family of the duck v,
(or 7v,,). It can be proved that if any solution starting at p € J is not long, then
it has the same winding number. From Theorem3.1, a duck passing through the
pseudo singular node point belongs to one of two families of the above ducks. On
the other hand, there exists a segment [C'D| C J such that any solution starting
at p € [CD)] is not long and the solutions passing through C or D are ducks. This
fact ensures the existence of a non S duck. Note that ;1 (u)/pe(u) is positive but
no an integer. If it is a positive integer k, it indicates the fact that the slow vector
field has two C?! trajectories but only one of them is C*. Then, it is not possible
to have an asymptotic expansion in powers of ¢ with the coeflicients analytic in
t. Furthermore, one of the solutions(3.8) may tend tangent to the X-axis, since
po(u) — —w/2 as u — w and for the first component of (3.8), the following

~(w/ARfP + /2P | g

(39) 2/w—1/w
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establishes. In this state, the winding number N(v,) associated with uy tends
to infinity and the other N (1) associated with p; tends to infinitesimal. When
u — w = e /3 the eigen space of the linear part of the slow vector field for
py =~ —e 13 is 2 ~ /3y (2 ~ —€'/3y for p; ~ —€'/3). The ducks are almost
tangent to the eigen spaces and therefore the w-limit of the duck with respect to
the parameter u (w-incomplete duck) is not S*.

Let v = 1/u, then 8, = —v2d, holds and then the following conditions are
h(z,y,z,u) = h(z,y,2v) € C* at almost every where but v = vy = 0. From
the assumptions, the relation ¢ = —h,(0,u)f,(0,u) = ciu holds. Differentiating
the both side of this equation by the parameter v, we can lead to the following
theorem.

Theorem3.2. In the first approximation of the system(3.3), if uq(u)/p2(u) is pos-
itive but no integer under the condition (3.5) and if Az, (0,v) fou(0,v) = 0 when
either the condition (1) or (2) ;

(1) fz(07 U) =0, and FLZ(Oa v)fzm,((),v) =0,

(2) ho(0,v) =0, and heuw(0,v) f-(0,v) =0,

where all the coefficients of higher order (more than 2) for u is negligible are satis-
fied, then this system has an w-incomplete duck.

Remark. In the system(3.3), if the coefficient ¢ satisfies ¢ = c;u + O(1), that is,

q = c1u+co where ¢1,¢p 20 and p > 0 or 0 > p > —1/32, then there exists a finite
value ug which makes the winding number infinite when u tends to uy.

4. THE FHN EQUATION.

We consider the space-clamped FitzHugh-Nagumo(FHN) equation (4.1) with
slowly varing in the time dependent parameter I;

dv/dt = —p(v) —w+ 1

(4.1) dw/dt = b(v — yw), p(v) =v(v —1)(v — a)

where 0 < a < 1/2, b and v are positive constants. Each variable is denoted as
follows;

v(t): the potential difference at the time t across the membrane of the axon,

w(t): a recovery current which is often taken to be the sum of all ion flows,

I: an injected electric current treated as a control or bifurcation parameter depend-
ing on the time t on the membrane such that

(4.2) I=1Io+et,

where €, is infinitesimally small and I is an initially given constant. The first of
(4.1) expresses Kirchhoff’s law applied to the membrane. The second relates the
recovery current with the potential. The constant v is restricted from biophysical
considerations so that

(4.3) 0<7vy<3/(1—a+a?



standard form of a slow-fast system with two slow variables and one fast variable,
that is,

(44) ) b= Ceg,

where ¢;=¢3=¢ and c is any constant.
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Though we first start at this condition, in Section6, we will refer to the case -

€1 # €. Benoit[3] gave a sufficient condition for the existence of the ducks: a
pseudo singular point is-a saddle point. Under the assumptions (4.2) and (4.4), the
system (4.1) has a pseudo singular saddle point [18], that is, this system has ducks.
After using several coordinate transformations, the system (4.1) is transformed to
the local model. This model has a pseudo singular node point under a certain
condition. Then two duck solutions v,, (i = 1,2) at the pseudo singular point

are obtained where p; (i = 1,2) are the eigenvalues associated with the linearized

system. Furthermore, in a sufficiently small neighborhood of v,,, the winding

number of the duck for p, which depends on the Hermite equation derived by the

several transformations becomes infinity when the constant v in the system (4.1)
tends to zero [11]. The winding number of the duck for o is limited and greater
than 1 in this state. As mentioned in Sectionl, Benoit[4] has already pointed out
that if the difference of each the ratio of the eigenvalues, which relates the winding
number directly is greater than 3, there exists a duck without S'. Therefore, this
fact tells us the first approximation system of the local model has a duck without
ST but this is not an explicit form.

In this back ground, there is the delay problem [1],[2],[14]. When k£ < 1 under
e = O(b*), it had not been solved yet because of the difficulty: the uniformity of
the solution is not ensured in the asymptotic expansion. Some authors ([6],[9],[12])
put b = e directly in their papers and obtained various results, however, they did
not touch ducks.

5. THE DUCKS IN THE FHN.
Using the assumptions (4.2) and (4.4), the system(4.1) becomes the system(5.1):
edv/dl = —p(v) —w+1,

(5.1) dw/dI = c(v — yw).

By changing the coordinates, w = X, I =Y and v = Z, the system(5.1) becomes
the system(5.2):
‘ dX/dI = c(Z —vX),
(5.2) dy/dI =1,
edZ/dI = (—p(Z) — X +7).
Note that the system(5.2) satisfies the conditions (A1)-(A5) in Section2 when € = 0,

but that this system does not satisfy the conditons (1) and (2) in the Theorem2.1.
Using the following coordinate transformation (5.3):

I 1 -1 0 X—XO
(5.3) yl=1-1 2 o|llY-v |,
z 0 0 1 Z~Zo
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the newly revised system on which the above conditions (7) and (i¢) establish is
obtained [18]:

dx/dt = —cy(2x +y) + cz,
(5.4) dy/dt = cy(2x +y) —cz+1,
edz/dt = —x — p(z + Zo) + p(Zy),

where Py = (Xo, Yo, Zp) is one of the two pseudovsingula,r points of the system(5.2)
in case ¢ = 0. By the "local model theory”, the explicit ducks of the system(5.5)
which is the local model of the system(5.4) are obtained as follows.

dX/dt =pY + cZ,
(5.5) dY/dt =1,
§dZ[dt = —(Z% + X),

where p = (=1)’cy /(a2 —a+1) (i = 1,2). The system (5.5) is the exact local
model which effects (5.4) globally. In fact, the first and second equations are first
order for the variables z,y and 2. Furthermore, the third equation does not contain
the variable y and co-variables are third order at most. So, it may be admissible
for us to use the system (3.3) globally . Restricting the system(5.5) on the surface
—(Z2 + X) =0, the linearized system(5.6) is obtained:

dY/dt = Z,

(5.6) dZ/dt = —(pY + cZ)/2.

The characteristic equation for (5.6) is

(5.7) 2u2 +cu+cyvaZ —a+1=0.

If we choose p = cyva? —a+1 and ¢ > 8yva? —a+1 so that the system (5.5)
has a pseudo singular node point, then the explicit ducks are

(58) Vi (t) - (—M?tz - 6ui7ta/1'it)(i =1, 2):
where p; (i = 1,2) are the solutions of (5.7).

6. AN w-INCOMPLETE DUCK IN THE FHN EQUATION.

In this section, we will describe how to construct an w-incomplete duck in the
first approximation of the FHN local model. By the elementary calculations, the
followings are obtained. See [11]. ‘

Lemma6.1. If vy tends to zero, the winding number N(v;) asssociated with
(p2 < p1 < 0) tends to infinity. '



Lemma6.2. If ¢; (i = 1,2) are not long, then in the first approximation of the
FHN local model the lower bound of —N(31) is 1 and of N(z;) is infinitesimal.

As mentioned before, if K — K; > 3, then there exists a duck which is not S* in
the first approximation of the local model. So, these facts lead to the conclusion:
there exists a duck which is not S? in the approximation model.

In this framework, we would try to consider the solution as a singular limit for
the parameter of the duck. In the system(5.5), we choose the parameter v such as
c¢=1/v and y=v. Let v = 3 (8 is any fixed), then blowing up the variable Z again
so that Z = (Z, the system(5.5) becomes the following;

dX/dt = (-1)'\/a2 —a+1Y + Z,

(6.1) dY/dt =1,
(6)dZ [dt = —(B*Z2 + X)),
where 6 = 0. Under the above assumptions, the system(6.1) satisfies the condi-

tions (A1)-(A5) in Section2. Therefore, the explicit duck solutions v,,(s) of the
system become

where p1(6), p2(8) (11(8) > u2(B)) are the solutions of the following equation:

(6.3) 2@2 +u/B+a2—a+1=0.

When ¥ = 3 tends to zero, the eigenvalue ;11 tends to zero and the other eigenvalue
p2 tends to infinity. Then the first element of y,,,(3) may tend to the solution which
is not S1. However, the conditions (A1)-(A5) are satisfied. In this state, we can
obtain an w-incomplete duck v, (¢):

(6.4) | Yolt) = (—£2/B% +8/B,t,—t/B?),

since this solution does not satify the definition of the ducks when ( tends to 0.

Theorem6.1. In the first approximation system(5.5) of the FHN local model, if
the constant c tends to infinity when the constant «y tends to zero, there exists an
w-incomplete duck.

Corollary6.2. In the singular limit, when v = 1/w = € and ¢ = 1/e/™ (n > 2;
integer), b satisfies b = e(1/eY/™)=el=1/" If we put I = Iy + €!~1/"¢ again, then
the FHN equation still preserve the assumptions (4.2) and (4.4). This fact ensures
that even in the case of b=ce; and I=Iy + eat (€7 Fe3) the first approximation of
‘the local model has an w-incomplete duck at the singular limit of the parameter.
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