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ON BRAID TYPE OF FIXED
POINTS OF HOMEOMORPHISMS
DEFINED ON THE TORUS

M LTEREEMFER
H A /A (Hisao SHIRAKI)

1 Introductidn

Huang and Jiang studied in [4] a method of estimating the number of pe-
riodic points of homeomorphisms f on the torus isotopic to the identity map.
For ‘any finite set of fixed points of f, the Jacobian matrix in Fox calculus can
be defined from which one can obtain information about periodic points. They
gave a method of calculating the Jacobian matrix. However, only one example
was given there, and a systematic investigation was not done.

‘'The purpose of the present paper is to study the Jacobian matrix. In our
investigation, we assume that two fixed points have been found. Then, we can
consider a homeomorphism on the torus with these two points deleted. It is
known that the homomorphism on the fundamental group of the punctured
torus induced by this homeomorphism can be identified with a braid on two
strings. The braid group on two strings has two generators p and 7. Therefore
the induced homomorphism is written as a product of p and 7. We study the
case where the exponent sum of each of the two generators is zero. Moreover
we only treat the case where the product has the simplest form. We compute
the Jacobian matrix explicitly, and as an application of this computation, we
show that the abelianization of the generalized Lefschetz number, which is an

important invariant in fixed point theory, is a symmetric polynomial.
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2 The Jacobian matrix and fixed points

We review some facts on the relation between the Jacobian matrix and
fixed points obtained by Fadell and Husseini [4] and Huang and Jiang [5]. Let
x1,T2,- -, Ty, be fixed points of a homeomorphism f on the 2-dimensional torus
T? which is isotopic to the ident'ity map id, and set C = {r1,23, -, 2},
M = T? — C. Then we can consider f : M — M. Pick a base point zg
for M. The group m (M, xp) is a free group of rank n + 1. Define elements

ai,az,- -+, an,b,c and g1, g2, -+, gn of m1(M, zo) as shown in Figure 1.

Figure 1

Obviously g; = ajaz---a; for 1 < ¢ < n. Now the 1-dimensional homology

group Hi(M) is an abelian group generated by a, az,- - -, ay, b, ¢ with a relation

ajaz---ap = 1. Let A denote the group ring ZH,(M). For p € Autm (M, xo),

let v(p) denote the homomorphisms on H;(M) and on A induced by .
Define a map B : Autm(M,zo) —» GL(n+ 1,A) by

0(gip) O(gip) 0O(gsp) \ Ab

6‘gj ' ob Oc
O(bp)  O(bp)  O(by) |

(9gj - 0b dc ’
Ocp) Olcp)  O(cp)

agj ob Oc 1<i,j<n—1

B(p) =

for any ¢ € Autm (M, o), where Ab denote the abelianization operator of the
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group ring Z w1 (M, xy) and the partial derivatives here are the Fox derivatives.
Note that the Fox derivatives are taken with respect to the basis {g1, g2, *, gn_1,
b, c}, while the element of A is written in terms of the basis {a2, a3, - -, an, b, c}.

Now we choose an isotopy { f¢}, where fo = id, fi = f, then {f;} determines
a subset fi(C) = {fi(z1), -, fizn)} of T? with n points for each t. Let u¢
denote the braid represented by f;(C) [2], [7]. The braid o¢ is identified with
an element of Autmi(M, o). Then the homomorphism f. : H1 (M) — Hi(M)
coincides with the homomorphism v(o¢). We use the same notation f, for the
extension of f., to A. Let H = Coker(f. —id). H is a quotient of H;(M)
obtained by identifying each a; with a;¢, b with 5*¢ and ¢ with ¢, where
ve = v(oc). Let pc stand for the projectioil Hi(M) — H as well as for its
extention A — ZH. , _

We can derive some information about fixed points from the Jacobian matrix
B(o¢). The generalized Lefschetz number L(f) is a useful invariant to study
fixed points. We shall be concerned with its abelianization L(f)4?, so we only
review the definition of L(f)4°.

DEeriNITION 1. Denote Fiz(f) the set of fixed points of f. We shall classify
Fiz(f) by the following equivalence relation:

x,y € Fix(f) are said to be abelianized Nielsen equivalent iff there exists a
path ¢ from z to y such that [(f o £)¢7!] is the zero element of H;(M).

Now, let z € Fiz(f). We need to choose a path w from zp to f(zp), and
a path ¢ from zp to z. Then we can identify the abelianized Nielsen class [z]
with an element [w(f o c)e™!] of H naturally. This correspondence is evidently

independent of the choice of c.

DEerINITION 2. For z € Fiz(f), let H(z) = [w(féc)c_l] € H. Forye€ H,
let Fiz~(f) = {z € Fiz(f) | H(z) = v}. Define L(f)"® by

L(f)* = ind(f, Fizy(f))y € ZH,

yeH

‘where ind( f, Fiz,(f)) is the fixed point index of Fiz,(f) [3], [6].

From this definition, it is clear that L(f)“? is a Laurant polynomial and the

number of terms in L(f)4% is a lower bound for the number of fixed points.
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In [4], Fadell and Husseini proved that the matrix B(o¢) is closely related to
L(f):

THEOREM 1. ([4], abelianized version) The polynomial 1 — tr(ucB(aC))

coincides with the abelianization L(f)*® of the generalized Lefschetz number of

f

We should note that B is not a homomorphism. However we have the
product formula:

(1) B(py) = B(e)*WB(W)  for ¢,% € Autmi (M, o).

3 Statement of the result

We concider the case C = {z1,22}. Let us first recall some facts about
braids on the torus. The braids p;, 7;(i = 1,2),0, used below are illustrated in

Figure 2. We use the commutator notation [a, 5] = afa~14~1 in groups.

Figure 2

ProrosiTioN 1.(Birman [1]) The pure 2-braid group on T? admits the
following presentation.:
Generators : p1, p2, T1, T2.
Relations : [p1,p2] = [11,72] = 1, A12 = 75 'p17207 ", AL = py i,
ALy = (M)A (75117, Arz = (p1p2) Ar2(pz 'o7 ),
where Ayg = |11, p1].
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The full 2-braid group admits a presentation obtained from above by adding
a generator 0y, and relations :

2 _ _ _ -1 -1
01 = A1z, p2 = 01p101, T2 =01 T107 .

By Proposition 1, the full 2-braid group is generated by oy, p1,71. Let
M = T? — {z1,z2}. We can choose an isotopy { fi} suitably to satisfy fi(z2) =
zy (0 <t <1). Then the braid vc is written as a product of plil and Tf?l. For
brevity, we shall write a = a2, g = g1,p = p1 and 7= 71. Obviously g2 = [b, ¢]
and g = goa”! = [b,cla™!. m (M, o) has two useful bases {a, b, c} and {g, b, c}.
Define the automorphisms p, 7 : 71 (M, o) — 71 (M, 2o) to be those determined
by the corresponding geometric braids p,7. By geometric inspection, we can
write down the automorphisms p*?, 7! in terms of the basis {g, b, c} as follows:

g+ cge? g c lgc
Pl b g-b Pt b ¢ lgeb,
c—c cH ¢
g+ bgb~! g—b7lgb
T:<bb . 771l bbb
¢ ge c— b lg7tbe

The Jacobian matrix B for the automorphisms p*!,7%! : m(M,z0) —

71(M, xo) become:

c 0 al(a-1) [t 0 alei(1-a)
Blp)=]-a a 0 , Blp™) =] ¢t al alei(l-a) |,

0 O 1 0 0 1

b a(a—-1) 0 b=!' oW (1-a) 0O
B(t)=1]0 1 0 |, Br ) = 0 1 0

1 0 a~! —ab~! b Ha-1) @

Thier actions on A are given by:

a—a aa
(2) v(p): { b+ ab, v(p™):{ b—a'b,

CH— C CH—C



44

a—a  (ama
I/(T):{bl—)b : U(T“l):{be.
c—alc crH—ac

These expressions and the product formula (1) enable one to calculate B(o¢)
for oc € Autm(M, xo) that is written as a product of p, 7 and their inverses.

For m >2, n>2 we have:

/ bm (1-a—1)mz_: b 0 )

3  B(r™)= 0 1 o |,
m-—1 m—2
1 mZ(ab)k Z k+1 rn k a~ ™
\ k=0 k=0 )
n—1
( e 0 (1—a“1)ch \
k=0
ny _ n—1
(4) B(p )_ _anZ(a—lc)k Z(l a~ k- 1+n)c

T

For m>1 n>1 we have :

( b—™ a~tb~™(1 - a)mi v 0 \

(5) B(t™™) = 0 1 0o 1,
m—1

m—1
\ —ab™™ » "(ab)k b Y (a*H 1ok o
k=0 k=0

/ |

( c ™ 0 ¢ ™(a"t - 1)"— c* \
' —-ny __ n-1 n—1 k:lff-:lo
(6) B(p ) = o Z(a‘lc)k a-" 1— a) Z —1)
k=0 k=0
\ 0 0 1 )
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From (1) ,(2),(3),(4),(5) ,(6), we can culculate the Jacobian matrix B(7™p") =
(xii)lgf,,jgz and B(1"™p™") = (yij)igi,j§3:

ProprosiTiON 2. For m,n € N

ry7 = cM(d"b)™ —a" | _i){Z(a”b }z(a_l ,

12 = a*(1—-a” Z (a"b)*,

m

T3 = (1 —1)2{2((% Z(anb)’ tle,

j=
n—1
To1 = —a"Z(a_lc)k,
k=0

Ty = a”

(n=1),

1o
N

T23 = (1- a’n—l—k)ck (n>2),

>
i
o

m n—1 V
r31 = a.m”+1bm2{a"—1(2(a—1c)j a—a¥)+c }(a”“b)_’C
7=0

k=1
(0 (m = 1),

m—1 k-1

I32 = < CL—l Z Z n+1b —k (m22),
=1 i=

‘ ; a~™{ 2mbm(a 1) + a(ab — 1)}

a2b — 1 . (n=1),
m—1 n-—1 ‘ n—2 j o
o L oS (B
k=0 j=0 j=01i=0
x (@ —a™ k)}(an+1b)k n 1] (n>2)
\
m—1 n—1
o= e {@ - (Y @) Y etk + 1
k=0 k=0
m—1

yiz = @™V —1) Y (a7,
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n—1 m—1
Y1z = amnb«mc—n(l _ a—l) {(1 _ a—(k+1)) (a—nb)j _ 1}Ck,
k=0 7=0
n—1
Y21 = CwnZ(G_IC)k,
k=0
Y2 = a’ ",
n—1
Yoz = L (a—(k+1)_1)ck,
k=0
m—-1 n-1
= 0 e L )@ - at) - am ),
k=0 = j=0
m k-1
Ys2 = (1___a~1)b—IZ{Z(an~lb—-1)i}ak
k=1 i=0
) - n—1 j
Y3z = am[a"”m_lb_lc_"(a-—l Z{ Zc’—l— ZZ “‘07
k=0 =0 j=0 i=0

x(a* — am)}(a”_lb“l)k + 1].

Since H1(M) is generated by a, b, ¢, we have:
(7) H =Za®Zb® Zc/Im(f. —id).

When o¢ = 7™ p"7™3p"2 ¢ Autm (M, xo), we have by (2):

(8) Im(fe —id) = Z(m1 + m2)a + Z(nq + n2)a.

We consider the case of m; +mg = ny +ny = 0. From (7),(8) we have that
 Im(f. —id) = 0 and A = Z[a, b, ¢, the ring of polynomials on a, b, c. Therefore,
L(f)#? is a polynomial on a, b, c. For x € Fiz(f), let I(z) be the coefficient of a
in the monomial H(z). We call I(x) the intersection number of . This number
coincides with the usual intersection number of the loop w(f o ¢)c™! with the
segment connecting x; to xs. |

Let B'(0¢) denote the simplified matrix of B(v¢) obtained by substituting
1 for b and c¢. Then we have:

1—tr(ucB'(oc)) = Z‘ind(f, Fiz;(f))a’,
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where Fiz;(f) = {z € Fiz(f) | I(z) = i}. The following theorem asserts that
L(f)#? is a symmetric polynomial :

THEOREM 2. Let oc =TMp"1™™p™ ™. Then we have the following equal-'
ity:
ind(f, Fz:cz(f)) = ind(f, Fz':cgmn_z-(f)) for any i.

4 Proof of Theorem 2

Theorem 2 follows easily from the following Lemma:

LeMMA. Let B'(o¢) = (24(a))

1<i,j<3’ where o = TMpPPT Mp ",
— Y =

Then the following equalities hold:
(1) 211(0,) = 1,'

(i) 21:(a) = a®™Pz;(a™") (i =2,3).
Proor. From Proposition 2, in the case at least one of m or n is 1, we have:

| a®  (m=1),
- z11(a) = 1, ze2(a) = 233(a) = {am (n=1).
We have the conclusion of this Lemma. _
Consider the case m > 2, n > 2. Let v; denote the i-th row vector of
B(Tmpn)u('r_"‘

vector of B(1™™p™"), where we put b = ¢ = 1. We use abbreviation as follows:

n
m __ km
A7 __E a*™.
k=1

#"") where we put b = ¢ = 1. Let w; denote the j-th column

From Proposition 2, we have:
v, = [am" —ma® ™t (1 - a HAP!, ma™(1—a™t),

a™(1 — a—l){(m F1)AT™ - ma—lA};m}],

_ n—-m+1 sm—1 n -m m n Am-—1
Ve = [—a AP a" o ™(AY , —a"A)T ],
m—1
O— [an—m+1(aA7—nl _m)A;n.—l + amn+1A;L1, CLn——l(a _ 1) z :Allca—-ks
k=1
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m n-1

a—m{(1 —a e ™ (AR AT +a Y (Y APlad)ak
k=1 j=1

n—1
—ma™t1 Z A;-""la.j) + 1}},
=1
w; = [am"{an(l —a)A A + 1}, aA;
™A AT - AR AT
- m
we = |a™(a"! - 1A 0, a " (a - 1) ZAZ‘lak},
k=1

:
wy = amn(1—a—1){a"(n-A;1)A,;ﬁ-n}, Azl —p,

(a— 1){71(1"“%1?,[1 + (A7 — a.m“Afn“'l) ZA;l} + am].

i=1

Since z;j(a) = v;*w;, where - is the inner product, we have z11(a) = 1.
This completes the proof of (i).

Similarly we have:

m n nAom-—14n
Ap A —a" AT An1

222(a) = ,

| A

mn (m — l)anA:'Ln:ll (A'}nn—l — nA'?n-—l)
233(0) = a — A}l_l
n—1 n—1
g2mn Allc AI;I
mA:Ln—l(A(lm+l)n—l - “Arn) B ; B ; ‘
Al | Al Apl

From above, we can easily prove the equalities (ii).
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