UNIFORMLY SHADOWING PROPERTY

都立大理 花井 博史 (Hirofumi Hanai)

東京理大理工 岡 正俊 (Masatoshi Oka)

Let M be a closed C^{∞} manifold and $C^r(M)$ be the set of all C^r differentiable maps endowed with the C^r -topology $(r \geq 1)$. $D_x f$ is
the derivative of f at x. Denote as \tilde{M} the topological product space $\prod_{-\infty}^{\infty} M \text{ and define a compatible metric } \tilde{d} \text{ on } \tilde{M} \text{ by } \tilde{d}((x_n), (y_n)) =$ $\sum_{-\infty}^{\infty} d(x_n, y_n)/2^{|n|} \text{ for } (x_n), (y_n) \in \tilde{M}, \text{ where } d \text{ is a metric on } M \text{ induced}$ by a Riemannian metric. We define a continuous map $\tilde{f}: \tilde{M} \to \tilde{M}$ by

$$\tilde{f}((x_n)) = (f(x_n)).$$

Then the projection $P^0: \tilde{M} \to M$ defined by $P^0((x_n)) = x_0$ satisfies $P^0 \circ \tilde{f} = f \circ P^0$. For a subset Λ an \tilde{f} -invariant set Λ_f is defined by

$$\Lambda_f = \{(x_n) \in \tilde{M} : x_n \in \Lambda, \ f(x_n) = x_{n+1}, \ n \in \mathbb{Z}\}.$$

If $\Lambda_f \neq \emptyset$ then $\tilde{f}|\Lambda_f : \Lambda_f \to \Lambda_f$ is a surjective homeomorphism. Remark that $\Lambda_f = M_f \neq \emptyset$ when $\Lambda = M$. We say that each element of M_f is an orbit of f.

For $\delta \geq 0$ a sequence $\{x^i\}_{i\in\mathbb{Z}} \subset M$ is called a δ -pseudo-orbit of f if $d(f(x^i), x^{i+1}) \leq \delta$ for every $i \in \mathbb{Z}$. A sequence $\{x^i\}_{i\in\mathbb{Z}} \subset M$ is said to be ε -traced by an orbit $(y_i) \in M_f$ if $d(x^i, y_i) < \varepsilon$ for every $i \in \mathbb{Z}$. We say that f has the shadowing property if for every $\varepsilon > 0$ there exists $\delta > 0$ such that every δ -pseudo-orbit of f can be ε -traced by an orbit of f.

A sequence $\{\tilde{x}^i\}_{i\in\mathbb{Z}}\subset M_f$ is called an orbit of \tilde{f} if $\tilde{f}(\tilde{x}^i)=\tilde{x}^{i+1}$. For $\delta\geq 0$ a sequence $\{\tilde{x}^i\}_{i\in\mathbb{Z}}\subset M_f$ is a δ -pseudo-orbit of \tilde{f} if $\tilde{d}(\tilde{f}(\tilde{x}^i),\tilde{x}^{i+1})\leq \delta$ for every $i\in\mathbb{Z}$. A sequence $\{\tilde{x}^i\}_{i\in\mathbb{Z}}\subset \tilde{M}$ is said to be ε -traced by an orbit (\tilde{y}^i) of \tilde{f} if $\tilde{d}(\tilde{x}^i,\tilde{y}^i)<\varepsilon$ for every $i\in\mathbb{Z}$. We say that \tilde{f} satisfies the shadowing property if for every $\varepsilon>0$ there exists $\delta>0$ such that every δ -pseudo-orbit of \tilde{f} can be ε -traced by an orbit of \tilde{f} .

We say that \tilde{f} satisfies C^r uniformly shadowing property if there is a neighborhood $\mathcal{U}(f)$ of f in $C^r(M)$ with the property that for $\varepsilon > 0$ there is $\delta > 0$ such that for $g \in \mathcal{U}(f)$ every δ -pseudo-orbit of \tilde{g} is ε -traced by an orbit of \tilde{g} .

Let $\pi:TM\to M$ be a tangent bundle of M and $\|\cdot\|$ be a Riemannian metric on TM. Define a subset of the product topological space $\tilde{M}\times TM$ by

$$T\tilde{M} = \{(\tilde{x},v) \in \tilde{M} \times TM : P^0(\tilde{x}) = \pi(v)\}$$

and define a Finsler $||\cdot||$ on $T\tilde{M}$ by $||(\tilde{x},v)|| = ||v||$. Then $\tilde{\pi}:T\tilde{M}\to \tilde{M}$ defined by $\tilde{\pi}(\tilde{x},v)=\tilde{x}$ is a C^0 -vector bundle over \tilde{M} . Define the projection $\bar{P}^0:T\tilde{M}\to TM$ by $\bar{P}^0(\tilde{x},v)=v$. Then,

$$\bar{P}^0|T_{\tilde{x}}\tilde{M}:T_{\tilde{x}}\tilde{M}\to T_{P^0(\tilde{x})}M$$

is a linear isomorphism where $T_{\tilde{x}}\tilde{M}=\tilde{\pi}^{-1}(\tilde{x})$. A linear bundle map $D\tilde{f}:T\tilde{M}\to T\tilde{M}$ covering \tilde{f} is defined by

$$D\tilde{f}(\tilde{x},v) = (\tilde{f}(\tilde{x}), D_{P^0(\tilde{x})}f(v)).$$

Then we have $D\tilde{f}(T_{\tilde{x}}\tilde{M}) \subset T_{\tilde{f}(\tilde{x})}\tilde{M}$ and $\bar{P}^0 \circ D\tilde{f} = Df \circ \bar{P}^0$. To simplify the notation we write $D_{\tilde{x}}\tilde{f} = D\tilde{f}|T_{\tilde{x}}\tilde{M}$. For a subset $\tilde{\Lambda}$ define

$$T\tilde{M}|\tilde{\Lambda} = \bigcup_{\tilde{x} \in \tilde{\Lambda}} T_{\tilde{x}}\tilde{M}.$$

A closed f-invariant set Λ $(f(\Lambda) = \Lambda)$ is said to be hyperbolic if $T\tilde{M}|\Lambda_f$ splits into the Whitney sum $T\tilde{M}|\Lambda_f = \mathbb{E}^s \oplus \mathbb{E}^u$ of subbundles \mathbb{E}^s and \mathbb{E}^u , and there are C > 0 and $0 < \lambda < 1$ such that

- (i) $D\tilde{f}(\mathbb{E}^s) \subset \mathbb{E}^s$ and $D\tilde{f}(\mathbb{E}^u) = \mathbb{E}^u$,
- (ii) $D\tilde{f}|\mathbb{E}^u:\mathbb{E}^u\to\mathbb{E}^u$ is invertible,
- (iii) $||D\tilde{f}^n|\mathbb{E}^s|| \le C\lambda^n$ and $||(D\tilde{f}|\mathbb{E}^u)^{-n}|| \le C\lambda^n$ for $n \ge 0$,

where ||T|| denotes the supremum norm of a linear bundle map T. The number λ is called the *skewness* of the hyperbolic set Λ . For $\varepsilon > 0$ and

 $\tilde{x} \in M_f$ the local stable and the local unstable manifolds are defined by

$$W^s_{\varepsilon}(\tilde{x},f) = \{ y \in M : d(x_n, f^n(y)) \le \varepsilon \text{ for } n \ge 0 \},$$

$$W^u_{\varepsilon}(\tilde{x},f) = \begin{cases} y \in M & \text{there exists } \tilde{y} \in M_f \text{ such that } y_0 = y \\ \text{and } d(x_{-n}, y_{-n}) \le \varepsilon \text{ for } n \ge 0 \end{cases}.$$

Then, $W^s_{\varepsilon}(\tilde{x}, f) = W^s_{\varepsilon}(\tilde{y}, f)$ for $\tilde{x}, \tilde{y} \in M_f$ with $x_0 = y_0$.

For $\tilde{x} \in M_f$ the stable and the unstable sets are defined by

$$W^{s}(\tilde{x}, f) = \left\{ y \in M : \lim_{n \to \infty} d(x_{n}, f^{n}(y)) = 0 \right\},$$

$$W^{u}(\tilde{x}, f) = \left\{ y \in M \middle| \begin{array}{l} \text{there is } \tilde{y} \in M_{f} \text{ satisfying } y_{0} = y \\ \\ \text{and } \lim_{n \to \infty} d(x_{-n}, y_{-n}) = 0 \end{array} \right\}.$$

Then, $W^s(\tilde{x}, f) = W^s(\tilde{y}, f)$ for $\tilde{x}, \tilde{y} \in M_f$ with $x_0 = y_0$. If Λ is a hyperbolic set, for $\tilde{x} \in \Lambda_f$ we have

$$W^{s}(\tilde{x},f) = \bigcup_{n=0}^{\infty} f^{-n}(W^{s}_{\varepsilon}(\tilde{f}^{n}(\tilde{x}),f)), \quad W^{u}(\tilde{x},f) = \bigcup_{n=0}^{\infty} f^{n}(W^{u}_{\varepsilon}(\tilde{f}^{-n}(\tilde{x}),f)).$$

Remark that $W^{\sigma}(\tilde{x}, f)$ ($\sigma = s, u$) are not always the manifolds like the stable and unstable manifolds given by diffeomorphisms. However we can define the transversality condition between $W^{s}(\tilde{x}, f)$ and $W^{u}(\tilde{y}, f)$ as follows.

Let \tilde{y} and \tilde{z} be points in Λ_f . We say that $W^s(\tilde{y}, f)$ is transversal to $W^u(\tilde{z}, f)$ if $f^{n+m} \mid W^u_{\varepsilon}(\tilde{f}^{-m}(\tilde{z}), f)$ is transversal to $W^s_{\varepsilon}(\tilde{f}^n(\tilde{y}), f)$ for $\varepsilon > 0$ small enough and $n, m \geq 0$.

The non-wandering set $\Omega(f)$ is defined by

$$\Omega(f) = \left\{ x \in M \middle| \begin{array}{l} \text{for any neighborhood } U \text{ of } x \text{ there is } n > 0 \\ \\ \text{satisfying } U \cap f^n(U) \neq \emptyset \end{array} \right\}.$$

Obviously, $\Omega(f)$ is closed and satisfies that $f(\Omega(f)) \subset \Omega(f)$ and $Per(f) \subset \Omega(f)$, where Per(f) denotes the set of all periodic points of f. A differentiable map f is said to satisfy $Axiom\ A$ if

- (i) Per(f) is dense in $\Omega(f)$,
- (ii) $\Omega(f)$ is hyperbolic.

We say that an Axiom A differentiable map f satisfies the strong transversality if $W^s(\tilde{y}, f)$ is transversal to $W^u(\tilde{z}, f)$ for $\tilde{y}, \ \tilde{z} \in \Omega(f)_f$.

Theorem. If C^1 -differentiable map f satisfies both Axiom A and the strong transversality, then \tilde{f} satisfies C^1 uniformly shadowing property.

This result was proved by Sakai for the class of C^1 -diffeomorphisms. The full proof of our theorem will appear elsewhere.

REFERENCES

- N.Aoki, K.Moriyasu and M.Oka, Differentiable maps having hyperbolic sets, Topology Appl. 82(1998) 15 – 48.
- [2] N.Aoki, K.Moriyasu and N.Sumi, C^1 maps having hyperbolic periodic points, to appear in Fund. Math.
- [3] J.Guckenheimer, J.Moser and S.Newhouse, Dynamical Systems (Birkhäuser, Boston, 1980).

- [4] M.Hirsch, J.Palis, C.Pugh and M.Shub, Neighborhoods of hyperbolic sets, Inv. Math. 9 (1970) 121-134.
- [5] M.Hirsch, C.Pugh and M.Shub, Invariant manifolds, Lecture Note in Math. 583 (Springer, Berlin, 1977).
- [6] K.Moriyasu, The topological stability of diffeomorphisms, Nagoya Math. J.123 (1991) 91-102.
- [7] K.Moriyasu, Axiom A endomorphisms having no cycle, in: N.Aoki, K.Shiraiwa, Y.Takahashi, ed., Proceedings of the International Conference on Dynamical Systems and Chaos 1 (World Scientific, Singapore, 1995) 182-186.
- [8] K.Moriyasu and M.Oka, The creation of homoclinic points of C^1 -maps, Topology Appl. 54 (1993) 47-64.
- [9] K.Moriyasu and M.Oka, Pseudo orbit tracing property and strong transversality of C¹ maps, in: N.Aoki, K.Shiraiwa, Y.Takahashi, ed., Proceedings of the International Conference on Dynamical Systems and Chaos 1 (World Scientific, Singapore, 1995) 187-191.
- [10] F.Przytycki, Anosov endomorphisms, Studia Math. 58 (1976) 249–285.
- [11] F.Przytycki, On Ω-stability and structural stability of endomorphisms satisfying Axiom A, Studia Math. 60 (1977) 61-77.
- [12] C.Robinson, Stability theorem and hyperbolicity in dynamical systems, Rocky Mountain J. Math. 7 (1977) 425-437.
- [13] C.Robinson, Structural stability of C^1 diffeomorphisms, J. Diff. Equat. 22 (1976) 28-73.
- [14] K.Sakai, The C^1 uniform pseudo-orbit tracing property, Tokyo J. Math. 15 (1992) 99–109.
- [15] K.Sakai, C^r Axiom A maps having strong transversality, Topology Appl. 54 (1993) 173–182.
- [16] K.Sakai, Pseudo orbit tracing property and strong transversality, Osaka J. Math. 31 (1994) 373-386.