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1 Introduction

Hénon ‘map fap(z, y) = (a— by — 2, ) is one of the most important objects in the chaotic
dynamical systems. Through its study, many mathematicians have confirmed some essen-
tial concepts in the dynamical systems presented by Smale [4], and encountered various
phenomena and interesting new problems which contain many difficulties originating from
its nonlinearity. Computer simulations are also indispensable for the progress of this
study. There have been many works on this map. However, we here state briefly some es-
sential works Which motivated our study of dynamics with a high-dimensional Hénon-like
diffeomorphisms. ’I‘;hjs'pla.nar map was first presented‘by Hénon [2] with its non-trivial
phenomenon called a strange attractor which was discovered by computational experiment
as shown in the first panel of Figure 1. Nitecki and Devany showed in [1] that, when a
and b satisfy some conditions, it has the same structure as a horseshoe map, that is, it
has a hyperbolic structure and ifs dynamics is coded perfectly by a topological conjugacy
with the 2-shift. Yang moreover showed that this structure is preserved until the first

homoclinic tangency occurs when a decreases and b takes very small positive values [6].
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Benedicks and Carleson proved that the occurrence of the non-trivial attractors is a
abundant phenoménon in the measure-theoretical sense. Mora and Viana extended their
result to more generic one-parameter family of surface diffeomorphisms. In [5], Viana
moreover extended their result to higher dimensions, that is, it assures the existence of
codimension-1 Hénon-like non-hyperbolic attractors near the homoclinic tangency on high-

dimensional manifolds.

TS

) 3)
Figure 1: (1) A 2-dimensional Herlon attractor, for a = 1.4 and b = 0.3. (2) and (3) The 3-dimensional

Herion attractors for (1.7, —0.1) and (0.2, 0.8), respectively.
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In our recent paper [3], on a somewhat different ground from that of Viana, we extend
the Hénon map to a high-dimensional space. One of the merits of our method is that
we can actually have a formula for this extended map which has some properties similar
to the 2-dimensional Hénon map. Therefore, one can observe globally its dynamics and
its progress of bifurcations by numerical computations. Actually, in the 3-dimensional

Euclidean space, we define a family of diffeomorphisms of Hénon type as
Fa,b(.’E, Y, Z) = (a'+ bz — xza z, y) ’

As in the 2-dimensional case, some non-trivial attractors are observed easily in ]R? by
numerical experiments, for example for (a, b) close to (1.7, —0.1), (0.2, 0.8), as shown in
the second, the third panel of Figure 1, respectively. However, it is not yet clear whether
these attractors are non-hyperbolic and persistently strange.

As the results of the paper [3], we present a two-parameter family F,, of diffeomor-
phisms of Hénon type on the Euclidean space of an arbitrary dimension m, and show
that there is an open set H,, in the product space of parameters such that, for every
(a, b) € Huy, F,p has a hyperbolic structure. The following article is a brief summary of

the results in [3].

2 Definitions and the main result

Let m > 3 be an integer, and R™ be the m-dimensional Euclidean space. We define the

two-parameter family F, ; of diffeomorphisms on R™ as
_ 2
Fop(z1, 22, ..., Tm) = (@ + bTm — 27, T1, T2, ..., Tm-1),

where a and b are real parameters. One shall see why we call this family a m-dimensional
special Hénon fdmz'ly by the following fundamental properties which are similar to those

of the 2-dimensional Hénon map. When b # 0, it’s inverse is

F(;bl(:zrl, Ty, vy Tm) = (T2, T3y +. .y Ty DN (—a+z1 +73)),
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and it is a bijection. Moreover, Fg; is a diffeomorphism on R™. When b = 0, F,o(z1, 22, ..., Tm) =
(a—z?%, x4, ..., Tm-1) which maps all points of R™ to the parabolic surface. The absolute

value of the Jacobian of F,; is equal to |b| for every x € R™, that is,

(—2z, 0 -~ 0 b )

1 0 --00
det(DF,p)x=det| 0 1 ---.0 0 |=(-D""%.
\ 0 0 ... 10

F,p is obtained by the composed mapping of ¢, ¢» and @,, that is, F,p = ¢, 0 ¢ 0 ¢, where

¢($1) T2, * -, .’Em) = (xm7 Ty, -0, xm-—l);
(1, T2y -+, Tm) = (bT1, T2, * ¢, Tm);
¢a($1, T2, *°*, .’L‘m) :(a+x1—x§, o, *°*, :L'm).

These above constructions of this family are similar to those of 2-dimensional Hénon
family. Moreover, in the following main theorem, we get an essential property of this

family, which corresponds to that of the 2-dimensional Hénon family.

Main Theorem. Let F,; be the m-dimensional special Hénon family. Let H,, be an open

set in the product set of parameter spaces such that

1+ Jb))?

Hm:{(a, b)e]Rx]R:a>( 1 (m+4+2\/m+4),b7£0}‘

For any (a, b) € H,,, the nonwandering set of F, is a horseshoe, that is, it is structurally

stable.

We can prove the main theorem using the following two theorems. See Figure 2. The
open set H,, occupies a large area in the product space of parameters meaning that the
structural stability is easily acquired by this high-dimensional family. However, numerical
experiments showed characteristic division of the area outside of H,, by some typical

bifurcations. Moreover, the combinations of parameters causing the non-trivial attractors
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are located outside H,. It may be very important to make a systematic investigation of

all the types of bifurcations occurring in this family.

-10

20

Figure 2: The open set H,, for m=3, 5, 10 and N/

3 Nonwandering set

Let F,; be the m-dimensional special Hénon family. We assume b # 0. We denote the

nonwandering set of Fy,p by £, In this section, we detect the location of {2,p. Let

1+ [b] + /(1 + [B])2 + 4a
r =
2 )

which satisfies the quadratic equation 72— (14]b|)r—a = 0. We assume that (1+]b[)®*+4a >

0. Using this r, partition R™ into m + 1 areas as follows: for each ¢ =2, 3, ---, m,
D = {(z1, T3, +*, Tm) ER™ : |zj| <71, j=1,2, .-+, m}
7'1 - {(2}'1, T2, *°°, xm) G_Rm : |.’II1| > T, lxll > l$j|; .7:2> 37 R m} ‘
T, = {(z1, z2, -+, Tm) ER™ : |x¢|>r, lz:| > |24, 7=1, 2,----,m,j7éi}.

When m = 3, these partitions are shown in Figure 3.
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Proposition 1 Let N be a subset of the direct product set of parameter spaces such that
N={(a b)eRxR : a>—(1+[b])*/4, b+£0}.
For any (a, b) € N, the nonwandering set Qqp for F,p is contained in D.

Proof. See [3]. [ |

\

Figure 3: The partitions of R®.

From the following lemmas 1 and 2, we get directly the proof of this theorem. For any

x = (z1;, T2, ***,Tm) € R™, we write
x|l = max{|z1|, |2, - |zm]}-
Lemma 1 For (a, b) € N,
(1) Fop(T1) CTy;
(2) For everyx € Ty, ||Fy(x)|| — o0 as n — oo;

(3) Fap(D) CDUT.
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Proof. See [3]. [

Lemma 2 For any (a, b) € N,
(1) Fl(Ts) C T
(2) F ) (T;) C T,_1UT, foreachi=3, 4, ---, m
(8) For every X € Uz, ’I;‘, [ Fop (X)|| = 00 asn — 0.

Proof. See [3]. |

4 Hyperbolicity

From the previous section, we understand that the nonwandering set of F,; is contained
in D. Therefore, in this section, we concentrate on the maximal invariant set of D. Let
Aqp be the maximal invariant set of D under Fop,ie. Agp = Niez Fj,b(D). The following

proposition gives a result on its hyperbolicity.

Proposition 2 Let F,, be the m-dimensional special Hénon family. Let )\ be a real num-

ber such that vym —1> X > 1, and let

a1(b, m) ='»(—1#2- (m+4'+} 2\/m+4).

For any |b] > 0, if a > a1(b, m), then the mazimal invariant set Ay is a hyperbolic set.

Proof. See [3]. ]
For m > 3, let us define
2 . o
Hyp = {(a, b)eRxR : a> ("’—’Z—f)_(mﬂwf‘m'; 1), b#O}.

For any point x € A, p, we define the unstable cone :

CU(x) = {(51, &, -, &m) € TLR™ )\\/§%+§§+...+§2 < ,&11},
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and take a stable cone in the complement of C*(x) in TxR™:

00 = {(6 &+, &) €TR™ : BTG+ 602 Nl

where X > 1 is a real number. The next lemma guarantees that these cones are invariant
and expanded exponentially by (DFa)x and (DF,, 4)x, respectively. Proposition 2 is given

directly from this lemma.

Lemma 3 Let F,; be the m-dimensional special Hénon family such that the parameters a
and b belong to Hm. For each x € Aqp, there exist the unstable and stable cones in T,R™

satisfying the following conditions:
(i) (DFop)xC¥(x) C C*(Fop(x)) and [[(DFap)xv|-2 Al[vl| for all v € C*(x);
(i) (DFJ,J)sz(X)‘ C C*(Foy(x)) and |(DF5*)v] 2 Av]| for all v € C*(x),
where |v|| = max{|&l, &, -+, [&ml} for v="(&, &, -+, &m)-

Proof. See [3]. ]

5 Proof for the 3-dimensional special case

In [3], all proofs of the above statements are presented perfectly. In this last section, we
give a proof of the above lemma for the special 3-dimensional case.
Let {F,p} be the same family as the previous subsection. We take m = 3, a = 5 and

b= 0.1. Then, we have

1+0.1+44/(14+0.1)>+4-5
= <

T = 5 3.

D={(z,y, 2) eR® : |2| <3, |yl <3, |2 <3}

Let A be the maximal invariant set of D under F. For any point x € A, we define the

unstable cone by

o0 = {0 e TR 5 W+ <lel},



99

and take a stable cone in the complement of C¥(x) in T, R?:

) = {(Em Q) e TR+ P+ 2 Ngl},

where )\ is a positive real number. In the next lemma, we show that these cones are

invariant, moreover expanded, under (DF)x and (DF™1),.

Lemma 4 There is a A\ > 1 such that for any 1 < XA < A, the unstable and stable cones

satisfy the following conditions for all x € A:

(i) (DF.)XC“(X) C C*F(x)) and Il(DF)va > A|v|l for all v e C*(x);
(i) (DF~1)xC*(x) C C*(F~(x)) and [(DF?)xv|| > A||v|| for all v € C*(x), .

where |[v| = max{|¢|, In], [{|} forv = (¢, n, () € C*(x), C°(x).

Proof. Let x = (z, y, 2) be a point in A. For any v = (£, 5, ¢) € C¥%x), we denote
(DF)xv as (&, m, ¢1). The image of the vector by the derivative is given by

& -2 0 b £ —2x€ + b
m | = 1 00 n|= §

We estimate
&) = — 26 + 8| > 2|=]|€] — [blI¢]

> 2la|lg] - [bly/ 1€/ — n?

> (2la] - BN Il
Asx=(z, y, 2) e DNF(D),a=5b=0.1and r = 3, we have
a+bz—22<r ie5+01z—22<3.

Then we have 22 > 2+ 0.1z > 2 — 0.3. Thus |z| > v/1.7 > 1.3. We assume that A = 1.5.

As |z| > 1.3, we have

&1] > (2 -1.3-0.1- g) €] > 2.533[€|.
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We next estimate

MWm2+G2 < AWe+ /N2 -¢?
< W€+ g2
< (WTHX2) ¢l < 2.167(¢].

Therefore,

€] > 2.533(¢] > 2.167|¢] > A/m2 + (.2,
Then, we obtain (DF)xv = (&, m, (1) € C*(F(x)), and
€, m, COIl = €] > 2.533]¢] > 2.167|¢] > 1.5¢] = Al|(€, n, QI

This completes the proof of (1).
For the second claim of this lemma, for any v = (£, 7, ¢) € C*(x), we denote (DF~1),v
by (§-1, 7-1, ¢-1) e,

= o 1 o\[¢) "
-1 =1 0 0 1 n|= ¢
¢ )\ bt 27y 0 )\ ¢ b€ + 2yn)

As before we take b= 0.1 and A = 1.5. As x € DN F~1(D), we have
‘b_l (—a+x+y2)’ <r
and then |
y22a——x——br25—3—0.1-3:1.'7.

Thus |y| > V1.7 > 1.3. When the vector v satisfies || > Alnl, that is, [¢| > 1.5|n|, we

estimate

V2 + (2 = V€2 + b2+ 2ym)? > [¢] 2 15| = Né_al.

Similarly, when the vector v satisfies A|n| > |{], we get

V-4 = Vb (e 2ym)’ 2 (57 16 + 2yl

> 67| @lylinl - 1€
> [ (2lylinl - Aty 2o
> (67! (20l = VAT T) Inf 2 13.98In| > 1.5]n] = Alé-al.
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Therefore, we obtain
(-1, -1, (1) € C*(F7H(x)).
We now estimate || (DF—™), v| for every v € C5(x). We divide the broof which the
vector v is expanded by the derivative of the inverse into three parts. When |v| =

max{|¢, [nl, I[} = €], that is, ¢ > |n] and |¢] > [¢], we estimate
571 + 2ym)| > 167 2lylInl — 1),
s FTCS Mgl and 6] > (L webave
671 lylInl — I€D) 2 167" (21ylVAZ =T~ 1) ¢] > 19.07}¢].

Therefore we have |[(DF~1)xv|| = [b71(€ + 2yn)| > A||[v]. When ||v|| = |n|, we similarly

estimate

I(DF vl = |57 (€ + 2ym)| > 67 (2lulIn] - le]) -
> (b7 |(2lyl = Dinl > 16[n] > Alv]l

Let |[v|| = |¢|]. We denote (DF~2),v as (£_2, 72, (_2) which is given by,

¢ o 1 o0)\[e, ¢
ne |=[ 0 0 1 lna|=| b7E+2m |
C_z b1 2b_.1y_’1 0 <_1 _ b_l(ﬂ + 2y_1§)

where (z_1, ¥_1, 2-1) = F~ Yz, y, 2). As similarly we have

IDF vl = ="+ 2y-10)| > b7 2ly-ali¢] = Inl)
> b7 |(2ly-a] — DICI > 16[¢] > AV

Therefore we get ||(DF~2)xv|| > A||v| for all v € C*(x). This completes the proof of the

lemma. [ |
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