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On the theory of commuting symbolic dynamical
systems and its generalization

SERFLHEE IBEEM  (Masakazu Nasu)

We consider dynamical systems (X, f), where X is a compact metric
space and f : X — X is an onto continuous map. Two dynamical systems
(X, f) and (X, g) are said to commaute if fg = gf.

Let (X, f) and (Y, g) be two dynamical systems. An onto continuous
map ¢ : X — Y with ¢f = g9, is called a factor map of (X, f) onto (Y, g),
and a homeomorphism ¢ : X — Y with ¢f = g¢ is called a conjugacy
of (X, f) onto (Y,g). If two dynamical systems (X, f) and (Y, g) have a
conjugacy between them, then we say that they are conjugate and write
(X, f) = (Y,9)

A continuous map ¢ : X — X with ¢f = f¢ is called an endomor-
phism of (X, f) and a self-conjugacy ¢ : (X, f) — (X, f) is called an
automorphism of (X, f). Hence if two dynamical systems (X, f) and
(X, g) commute, then g is an onto endomorphism of (X, f), and if ¢ is
1-1 in addition, then g is an automorphism of (X, f).

Let X be a compact metric space endowed with metricdy. Let f : X —
X be a continuous map. A bisequence (z;);ez of points z; of X is called
an orbit of f if f(x;) = xj41 for all j € Z. For € > 0, we say that f is e-
expansive or call € an expansive constant for f if for any orbits (x;);cz and
(2})jez of f,if dx(x;,2};) < eforall j € Z, then (z;)jez = (x;-)jez_. We say
that f is positively e-expansive if for any z,2' € X if dx(f/ (), f?(2")) <€
for all j > 0, then x = 2'. We say that f is expansive if f is e-expansive
for some € > 0, and we also say that f is positively expansive if f is
positively e-expansive for some € > 0.

For 6 > 0, a bisequence (y;);cz of points y; of X is called a é-pseudo-
orbit of f if dx(f(y;),yj+1) < 6 for all j € Z. For € > 0, an orbit (z;);ez
of f is said to e-trace (y;)jez if d(xj,y;) < € for all j € Z. We say that
f has the pseudo-orbit tracing property (POTP) if for any € > 0, there is
6 > 0 such that any é-pseudo-orbit of f is e-traced by some orbit of f.
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An onto continuous map f : X — X of a metric space is said to be
topologically transitive [topologically - mixing] if for any nonempty open
sets U,V C X, there is n € N such that f*(U)NV # ( [there is N € N
such that for all n > N f(U)NV # @]. : |

Let A be an alphabet (i.e.; a finite set of symbols). Let X4 = AZ =
{(aj)jez | a; € A} (with the product topology of the discrete topology
on A). We define a metric d on X4 as follows: for z = (aj)jez and
Yy = (bj)jez in X4, d(z,y) =0if x =y, and d(z,y) = 1/(1 + k) if z # y,
where k = min{|j| | j € Z aj # b;}.. The homeomorphism o4 : X4 — X4
defined by

0a((a))jez) = (aj+1)jez, (a)jez € Xa,
is called the shift map. The dynamical system (X 4,04) is called the full
shift over A. Let X be a closed subset of X4 with o4(X) = X. Let

o = 04|X. Then we have a dynamical system (X, o), which is called a
subshift over A.

Let X4 = AN. We define a metric d on X4 as follows: for 7 = (a;)jen
and § = (bj)jen in X4, d(2,9) =0if & =g, andd(x y)—l/klfx#y,
where k = min{j € N | a; # b;}. The continuous map 6, : X4 — X4
defined by

5((aj)jen) = (aj41)jen,  (aj)jen € Xa,
is called the one-sided shift map. The dynamical system (X 4,04) is
called the one-sided full shift over A. Let X be a closed subset of X4

with 54(X) = X. Let 6 = 64|X. Then we have a dynamical system
(X, 0) which is called an (onto) one-sided subshift over A.

Theorem 1 (Hedlund [H], Reddy [R]). Let X be a 0-dimensional com-
pact, metric space. Then the following statements are valid.

(1) If ¢ : X — X is an expansive homeomorphism, then (X, ¢) is
conjugate to a subshift.

(2) If ¢ : X — X is a positively expansive onto continuous map, then
(X, ¢) is conjugate to a one-sided subshift.

Let (X,0) be a subshift over an alphabet A. Let n € N. Let L,(X)
denote the set of all n-blocks or all words of length n that appear on some
bisequence in X, that is,

Ln(X) ={ao- - an-1 | (aj)jez € X,a; € A}.
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Let (X,o0x) and (Y,0y) be subshifts. Let m,n be nonnegative integers.
A mapping ¢ : X' — Y is called a block map of (m,n) typeif it is given by
amapping @ : Lyine1(X) — Li(Y) in such 'a way that if for (a;);ez € X,
a; € Ll(X), then qﬁ((aj)jez) = (bj)jez with o

bj = ®(a—myj - anyj) forall jeZ.

In particular, a block map of (O,’O) type is called a 1-block map.

Theorem 2 (Curtis, Hedlund, and Lyndon [H]). Let (X,ox) and
(Y,oy) be subshifts. Let ¢ : X — Y be a continuous map with ¢ox =
oy¢. Then ¢ is a block map of (m,n) type for some m,n > 0.

Let (X,0) be a subshift and let £ € N. We define the higher block
system of order k of (X, o), which was defined by Adler and Marcus
[AM], to be the subshift (X, o*l) over the alphabet Li(X), where

XW = {(a;- - ajri1)jezl(a;)jez € X}
Let m,n > N with k = m + n+ 1. Define
P (X, 0) — (X1, o)
to be the conjugacy such that

[m,n]

px ((a;)jez) = (@jom - @jin)jez, (aj)jez € X.

Let (X,0x) and (Y, 0y) be subshifts. Let ¢ : (X,0x) — (Y,0v) be of
(m, n)_type with integers m,n > 0. Then there is a natural 1-block factor

map ¢ : (X" 5 yiminiy) — (Y, 0y) such that the following diagram
commutes:

X [m+n+1]
px ’"w ¢
X —_— Y .

¢

It is often convenient to consider a factor map between subshifts as a
1-block map, passing through a higher block system in this way.

Let (X,0x) be a subshift. Let ¢ be an onto endomorphism of (X, ox).
Then the dynamical system (X, ¢) commutes with (X, ox). More gener-
ally if ¢ and 7 are onto endomorphisms of (X,ox) with ¢7 = 7, then
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we call (X, ¢) and (X, 7) commuting symbolic dynamical systems. Thus
in symbolic dynamics, commuting dynamical systems are dynamical sys-
tems of commuting block maps. We note that the “1-dimensional cellular
automata” are the dynamical systems of block maps which commute with

the full shifts.

Let G be a graph. Here a graph means a directed graph which may
have multiple arcs and loops. The following is an example of a graph.

QO

CD

Let Ag and Vi denote the arc-set of G and the vertex-set of G, respec-
tively. For the case of the example above,

Ag ={a,bc,d,e} and Vg={u,v)}.

Let i¢ : A¢ — Vi and t¢ : Ag — Vi be the mappings such that for
a € Ag, ig(a) is the initial vertex and ¢s(a) is the terminal vertex in G.
Hence a graph G is represenced by

e tg
(*) VG ¢ AG > V(;.

A graph G is often given by its adjacency matriz M or its representation
matriz Mq: for the case of the example above,

2 2 a+ b, c+d)

MG:(l 0 e, 0

) and MG=(

Let X be the set of all points of A% compatible with the diagram (%),
ie.,
Xe ={(aj)jez | Vi € Z,a; € Ag,tc(a;) = ic(ajn)}-
Then we have a subshift (Xg,04), which is the topological Markov shift
whose defining graph [matriz]is G [Mg or Mg]. If welet X¢ = {(a;)jen | Vj €
N,a; € Ag,tc(a;) = ic(aj+1)}, then we have a one-sided topological
Markov shift (Xg, 7G)-
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Theorem 3 (Walters [W]). Let f : X — X be an onto continuous
map of a 0-dimensional compact metric space with POTP. Then
(1) if f is an expansive homeomorphism, then (X, f) is conjugate to a
topological Markov shift; v
(2) if f is positively expansive, then (X, f) is conjugate to a one-sided
topological Markov shift.

For graphs I' and G, a homomorphism from I' to G, written by p :
I' — G, is a pair of mappings pa; Ar — Ag (arc-map) and py : Vr — Vg
(vertez-map) such that the following diagram commutes;

ir ir
Vi &— Ar — Wt

pvl ij lpv

VG — AG _ VG .
G tG

If p4 and py are onto, then we say that p is onto.

A graph-homomorphism A : I' — G defines a 1-block map. Any fac-
tor map ¢ : (X,0x) — (Y,0y) between topological Markov shifts is
essentially given by a 1-block factor map ¢, defined by an onto graph-
homomorphism p : I' — G, that is, there is a conjugacy v such that the
following diagram commutes:

X —¢—> YZXG

wjy

Xr

Theorem 4 (Coven-Paul [CP]). Let (X,0x) and (Y, 0y) be topolog-
ically transitive topological Markov shifts. Let ¢ : X — Y be an onto
continuous map with ¢gox = oy¢. Then h(ox) = h(oy) if and only if ¢
is bounded-to-one. (h denotes topological entropy.)

This is generalized to the following.
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Theorem 5 (Boyle [B]). Let X and Y be compact metric spaces.
Let f: X — X and g : Y — Y be topologically transitive, expahsive
homeomorphisms with POTP. Let ¢ : X — Y be an onto continuous
map with ¢f = g¢. Then h(f) = h(g) if and only if ¢ is bounded-to-one.

We define a textile system T over a graph G to be an ordered pair
of graph-homomorphisms p : I' - Gand ¢ : ' — G such that for
a € Ar, the quadruple (ip(a),tr(),pa(e),qa()) uniquely determines
a. We write T = (p,q : I' — G). We have the following commutative
diagram: '

1G t¢
VG — AG —— V(;.

I R

ir t[‘
(**) VF — AF —— VF

o w e

Vg &«— Ag —— Vi .
i - ig

We can define two graphs G and I'T by
GT : VT< by VI‘ v >VG

ba qa
I'T @ Ag+ Ar y Ag,

and can define a teXtile system over GT

T = (i,t: T — GT)
with graph-homomorphisms i = (ir,i¢) and t = (tr,ts), which is called
the dual of T. V

Let Ur be the set all points of AZ’ (endowed with the product topology
of the discrete topology on Ar) that are compatible with the diagram (**),
ie.,

Ur = {(ij)ijez | cij € Ar,tr(ai;) = ir(aij41)
and qA(ozij) = pA(aH_l,j) for all Z,] S Z}
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Each point of Uy is called a textile woven by T. Let

Zr = {(awj)jez | (cij)ij € Ur}
Xr = {(palaoj))jez | (ij)ijez € Ur}.

We have subshifts (Zr,¢r) and (X7,07). We call (X7,07) the woof shift
(i.e., the subshifts of the horizontal threads) of T. The maps p4 and g4
naturally define onto 1-block maps

fT:ZT_’XT and T]TZZT—>XT.

For the dual T, we have (Zr-,¢r-) and (Xp-,07+) and 1-block maps
&r 2 Zr» — Xpe and npe @ Zpe — Xp-. We call (Xg«, 07+) the warp shift
(i.e., the subshifts of the vertical threads) of T'. If &7 is 1-1,then we define
an onto endomorphism ¢r of (X7,07) by or = nrézt. If both &7 and nr
are 1-1, then ¢ isan automorphism of (X7,07). We also naturally define
one- 81ded subshifts (ZT,gT) and (XT, or) and onto maps fT Zr — Xr
and 7y : Zr — Xr. We call (X7,67) the one-sided woof shift of T, and
(X7w,67+) is called the one-sided warp shift of T 1If r is 1-1, then we
define an onto endomorphism @1 of (XT,O'T) by ¢or = 77T€T . We say
that T is nondegenerate if (Xr,07) = (Xg,06)-

A textile system T over G also is defined by two graphs G1(= G) and
Go(= GT) with the same vertex-set and the finite set Sq(T’) of the squares
of the form

o«
d
where a,a’ € Ag,, b,b' € Ag, with
iGl(a> - iGz(b>? tGl(a) = iG2(bl>? th(b> = iGl(a,>’
and tg,(a') = tg, ().

- Then a textile woven by T is a Wang tiling generated by the Wang tiles
in Sq(T). (The tiles must be placed edge-to-edge without reflection and
rotation so that edge colors match.)

.<g‘—.

7"
a

Let T be a textile system. For (r,s) € Z2%, let ag’s) : Ur — Ur be
defined by *

o8 ((0ij)ijez) = (Cisnjis)ijez, (04j)ijez € Ur.
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Define

Ur = {(cij)ienjez | (®ij)ijez € Ur}
and A
Ur = {(ij)ijen | (cij)ijez € Ur}.

A point of Uy is called a half textile and that of UT is called a quarter
textile. For r,s € Z with r > 0, we define a(r 5) . : Ur — Ur by

50 (04j)ien jez) = (Qigrjus)ienjezs  (Gif)ien jez € Ur.

Similarly we define o( °) : Ur — Uy for r,s > 0.

Proposition 6 [N1]. Let T be a textile system.
(1 ) If &7 is 1-1, then o7 = nrért is expansive if and only if both &7
and np- are 1-1; 1f all &7, nT,fT* and 77~ are 1-1, then

(Ur,05Y) ~ ~ (X7, 07) ~ (X7-,07+)
and
(Ur, o) > (Xpe, 1) ~ (X7, 07).

(2) If £r is 1-1, then pr = nrépt is posmvely expansive if and only if
&+ and nr- are 1-1; if fT* is 1-1, then o = TIT*fT* is expansive if and
only if &7 is 1-1; if all &p, &p and N~ are 1-1, then

(Or, 507 (X7, 1) = (Xp+, 67+)
and ) )
(Ur, 5(0’1)) ~ (X7+, 1) = (X7,07).

(3) If € is 1-1, then ¢r = 77T§T is positively expansive if and only if
Ere is 1-1; if both &r and fT* are 1-1, then

(Ur, (10)) (XT,SOT)Q(XT*ﬁT*)-

Theorem 7 ([N1]). Let (X, f) and (X,g) are commuting dynamical
systems which are conjugate to topological Markov shifts. Then there
are a nondegenerate textile system T with T* nondegenerate and with all
&rymr, &+ and np- 1-1, and a homeomorphism v : X — X7 such that the
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following diagrams commute:

x 1. x  x 9. x
v| v ¥ v
Xr 2 X0 Xp 2, xp

Let p: I' — G be a graph homomorphism with p = (p4,py). We say
that p is right [left] resolving if for any on, a9 € Ar, ir(a) = ir(aw)[tr(ay) =
tr(ag)] and pa(a;) = pa(es) imply a; = as. We say that p is right
complete [left complete] if for any u € Vv and a € Ag with ig(a) =
pv(u)[te(a) = pv(u)], there is o € Ar such that ps(a) = a.

The following is well known (see [LM]).

Proposition 8. Let p : I' — G be a right [left] resolving graph-
homomorphism. Let ¢, : X — X be the 1-block map defined by p.
Then

(1) if ¢, is a conjugacy of (Xr,or) onto (Xg,0¢), then p is right [left]
complete;

(2) if or and o¢ are topologically transitive and h(or) = h(og), then
p is right [left] complete.

A textile system T = (p,q : I' — G) is said to be LR if p is right
resolving and right complete and g is left resolving and left complete. T
is said to be LL if both p and q are left resolving and left complete.

Let GG; and G be graphs with the same vertex-set. Let us call a “path”
of length 2 of the form ab with t¢,(a) = ic,(b), a G1-Go path, which is
actually an arc of the graph G1G3 with adjacency matrix Mg, Mg,. Then
for a textile system T, Sq(T) C Ag,6, X Ag,c, is a relation such that
each element in Sq(T') is the ordered pair (ab,ba’) of a G1-G4 path ab/
and a Gy-G; path ba' with the same initial vertex and the same terminal

vertex.
b'_—J /

a
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- An LR textile system T over G is also defined to be a textile system
T such that the relation Sq(T) is a one-to-one correspondence between
the set of all Gi-G, paths and that of all G5-G; paths with G, = G
and Gy = GT. Hence it is given by commuting two nonnegative integral
matrices M, N and a legal one-to-one correspondence k between the set of -
all G1-G5 paths and that of all Go-G paths with Mg, = M and Mg, = N.

This is given by a specified equivalence
MN & N

Proposition 9 [N1]. Let T be an LR textile system given by a specified
equivalence MN & N

(1) For r,s € N, (UT70¥’3)) is conjugate to the topological Markov
shift whose defining matrix is M°NT. ‘

(2) For r,s € N, (@'T, &&T’S)) is conjugate to the one-sided topological
Markov shift whose defining matrix is M°N".

Let (X1,01) and (X3,02) be subshifts and let ¢ : X1 — X; be a con-
tinuous map with ¢o; = 09¢. We say that ¢ is right closing if for any
z,y € X1, limy—oo dx, (07™(z),07"(y)) = 0 and ¢(z) = ¢(y) imply z = y.

Proposition 10. Let (X,0) be a subshift and ¢ an onto endomor-
phism of (X, c). Then @o™ is positively expansive for some n € N if and
only if ¢ is right closing. (Here, (X, &) is the-one-sided subshift naturally
induced from (X, o) and o™ is the endomorphism of (X, &) induced from
o™ for sufficiently large n.) |

According to the following proposition, we can say that all right clos-
ing endomorphisms of topological Markov shifts stem from LR textile
systems. In particular, so do all automorphisms because they are right
closing.

Proposition 11 [N1]. Let (X,0) be a topological Markov shift and
¢ an endomorphism of (X,0). Then ¢ is right closing if and only if
there are an integer n > 0 and an LR textile system T' with & 1-1,
(X1,07) = (X,0) and ¢ = pro™".

The following theorem was independently given in [N2] and in [Ku]
(see also [BM] and [BFF]).
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Theorem 12 ([N2], Karka [Ku]). Let (X, f) and (X, g) be commut-
ing positively expansive dynamical systems with (X, f ) conjugate to a
topologically transitive, one-sided topological Markov shift. Then (X, 9)
is conjugate to a one-sided topological Markov shift.

Theorem 13 ([N1]). Let (X, f) and (X,g) be commuting dynami-
cal systems which are conjugate to one-sided topological Markov shifts.
Then there are an LR textile system T with both &7 and & 1-1, and
a homeomorphism 1 : X — Xy such that the following diagrams com-

mute:
x . x x4, &
o] E] v
JOPLIN S S

with @T = ﬁTfNT . (Hence, if T is defined by a specified equivalence

MN 4 NM, then for all r,s > 0 with (r,s) # (0,0), (X, f"g*) is conju-
gate to a one-sided topological Markov shift whose defining matrix M"™N °)

Theorem 14. Let n € N. If 7,---, 7, are pairwise commuting, pos-
itively expansive, onto continuous maps with POTP, of a 0-dimensional
compact metric space X, then there are palrvvlse commuting, nonnegative
integral matrices My, - - -, M, such that (X, 7{* - .- 7%) is conjugate to the
one-sided topological Markov shift whose defining matrix is Mk .. - Mk
for all integers ki, -- -, k, > 0 with (ky,---, k,) # (0,---,0).

The following theorem was independently given in [N2] and in [Ku].

Theorem 15 ([N2], Kirka [Ku]). Let (X, f) and (X, g) be commuting
dynamical systems with f expansive and g positively expansive. If (X, f)
1s conjugate to a topologically transitive topological Markov shift, then

(X, g) is conjugate to a one-sided topological Markov shift.

Theorem 16 [N1]. Let (X, f) and (X, g) are commuting dynamical
systems with (X, f) conjugate to topologically mixing topological Markov
shift. Then there are a textile system such that T* is LL, &7, Ere, fipw are
1-1, and (XT* or~) is conjugate to a one-sided full shift, and a homeo-
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morphism 2 : X — X7 such that the following diagrams commute:

x 1. x x 2 x
v Tx, xe P ox

(Hence (X, g) is vconju_gepte to a one-sided full shift.) |

Let f : X — X be a continuous map. Let Oy be the metric space
of all orbits of f endowed with the metric do, defined as follows for

T = (xJ)Jez_?md Y= (yJ)JEZ m Of, :
dof(w y) = sup{2 de(mjayj) | ]E Z}-
We deﬁne of: (’)f — Of by

or((zj)jez) = (f(z)))jez = (xj1)jezs (2j)jez € Of.
Fore>0andm€(’)f,wehave | | | |
W (:c,af) = {(yJ)JEZ € Oy I dX(xﬁy]) <e for j< 0}

and
Wi, o5) = {(y))jez € O | dx(zj,y;) < € for J > 0}.

We say that f has canonical coordinates (CC) if for any € > 0, there is
6 > 0 such that for any ¢ = (z);ez and y = (y;) ez in Oy,

dx(z0,40) < 6 = Wz, 00) N WE(y,0p) # 0.

- In line with the definition of ‘coding’ given by Bolye and Lind [BL],
we define the following. Let A = {¢; : X — X; | i € I} and B = {¢} :
X — X | j € J} be two sets of continuous maps between compact metric
spaces, where I and J are indexing sets. Let €, > 0. We say that A
(¢,€')-codes B if for any z,y € X, |

Vi € I, dx,(¢i(x), ¢i(y)) < €
= Vj € J,dx,(#j(z), ¢i(y)) < €.

If A (¢,€)-codes B, then we say that A e-codes B.
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The following is well known.

Lemma 17. Let f : X — X be a continuous map of a compact metric
space. Let ¢ > 0. '

(1) If f is e-expansive (i.e., € is an expansive constant), then for any
€ > 0 there is an integer m > 0 such that {f7 | 0 < j < 2m} (e, €')-codes
{f™} (ie., for any z,2' € X, if dx(f/(z), f/(z')) < e for 0 < j < 2m,

then dx(f™(z), f™(2')) < €) |

(2) If f is positively e-expansive, then for any € > 0, there is an integer
m > 0 such that {f/ | 0 < j < m} (¢,¢)-codes {idx}.

Let f: X — X and g: Y — Y be continuous maps of compact metric
spaces. Let € > 0. Let m,n be nonnegative integers. Then a continuous
map ¢ : X — Y with ¢f = g¢ is said to be of (m,n) type with respect to
eif {f/]j=0,---,m+n} e-codes {g™d}.

Boyle and Lind [BL] introduced a ‘finite’ version of expansiveness which
is an analogue of the block maps. The following is a version of it and a
direct corollary to the lemma above.

Corollary 18 (Boyle and Lind). Let f : X - X andg:Y — Y
be continuous maps of compact metric spaces. Let ¢ : X — Y be a
continuous map with ¢f = g¢. Let € > 0.

(1) If f is e-expansive, then there are integers m,n > 0 such that ¢ is
of (m,n) type with respect to e, ~

(2) If f is positively e-expansive, then there is an integer n > 0 such
that ¢ is of (0,n) type with respect to e.

Let f: X — X and g: Y — Y be onto continuous maps of compact
metric spaces. Let € > 0. Let ¢ : (X, f) — (Y,g) be a factor map. We
say that ¢ is e-preserving if {idx} e-codes {¢}. The e-preserving factor
maps are an analogue of the 1-block maps in symbolic dynamics. If f is
e-expansive, then ¢ becomes e-preserving passing through a ‘higher block
system’ of sufficiently large order of (X, f).

Let ¢ be e-preserving. We say that ¢ is right e-resolving if {idx, gé} e-
codes {f} (i.e., for any x,2' € X, if dx(z,2') < € and dy(gé(z), go(z')) <
€, then dx(f(z), f(2')) < € ). We say that ¢ is left e-resolving if {¢, f}
e-codes {idx}.

Let ¢ : (Of,0¢) — (Oy4,0,) be the factor map induced by ¢, i.e., for
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x = (})jez, é(x) = (é(z;)) ez- Since ¢ is e-preserving, for every x € Oy,
Wi(o(@),00) D (Wi (x,04)) and
We(d(x),09) D ¢(Wi(x,07)).
We say that ¢ is right e-complete, if for all z € Oy,
WH(d(x),0,) = d(W (x, 05))-
We also say that ¢ is left e-complete, if for all & € Oy,

We(d(@),00) = §(We(,09)).
The following proposition is a generalization of (1) of Proposition 8.

Proposition 19. Let f: X — X and g: Y — Y be onto continuous
maps of compact metric spaces. Let € > 0. Let g be e-expansive. Let
¢ : (X, f) — (Y,g) be an e-preserving conjugacy.
(1) If ¢ is right e-resolving, then it is right e- complete
(2) If & is left e-resolving, then it is left e-complete.

The following theorem is a generalization of (2) of Proposition 8.

Theorem 20. Let X and Y be compact metric spaces. Let f : X — X
and g : Y — Y be topologically transitive, onto continuous maps with
h(f) = h(g) and both having POTP. Let ¢ : (X, f) — (Y, g) be an onto
factor map. Then for all sufficiently small € > 0, the following are valid:

(1) if ¢ is e-preserving and right e-resolving, then ¢ is right e-complete.
- (2) if ¢ is e-preserving and left e-resolving, then ¢ is left e-complete.

Let € > 0. We define an e-teztile-orbit-system T to be a quadruple of
e-preserving onto continuous maps

ix : X—=W tx : X->W, py: Y oW gv:Y =W

between compact metric spaces such that ¢x and py are homeomorphisms
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and the following diagram commutes:

W — X — W
p;»lj jp;l
Y Y
qy qy
W ) x X w

We write T' = (ix,tx : X — W; py,qy : Y — W). Wecall z =
(¥,9,2,2") €Y xY x X x X a square of T if ix(z) = py(y),qv(y) =
ix(2'),tx(z) = py(y') and ¢v(y') = tx(a’). Let Z be the set of all
squares of T and let it be endowed with the max metric. We call Z
the square space of T. We define projections iz, tz, pz, gz as follows: for
z = (yaylaxax,) € Z, Z.Z(z) = yatZ(Z) = ylapZ(Z) = z, and QZ(Z> =z
Then all the projections are e-preserving, iz and pz are homeomorphisms,
and the following diagram commutes:

W« ZX X X » W
PY1 bz Py
y 27 .y
QYl - lQZ JQY
|24 %Z’X X 0 > W .

A two-dimensional configuration (z;;); jez of squares is called a textile
orbit of T if for all 4,5 € Z,

tz(zij-1) = iz(zij) and qz(zi—1j) = pz(zij).

We say that T'is LL if {t7,pz} e-codes {id; } and if {tz, ¢z} e-codes {id;}.
We also say that T is LR if {tz,pz} and {iz,qz} e-code each other.
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Using Theorem 20, one can prove the following lemma.

Lemma 21. Let € > 0. Let T = (z’X,tX X — 1W;py,qY 'Y — W) be
an e-textile-orbit-system. Let Z be the square space of T'. Let f = i'tz,
let f* = p;'qz, and let g* = pylgy. Assume that g* is topologically
transitive and expansive, and has POTP (and hence f* has the same
properties because iz : (Z, f*) — (Y, g*) is a conjugacy) and that there
are c,€p,89 > 0 with € < min{éy/3,¢c/5} and &y < €y such that both f*
and g* are c-expansive, {idz} (g, ¢/2)-codes {tz} and any &-pseudo-orbit
of f* is ey-traced by some orbit of f*. Then the followmg statements are
valid.

(1) If T is LL, then f is constant-to-one and open, and moreover for
any textile orbits (z;;); jez and (2};)ijez of T,

WE((z0)iez, 05) NWE((2o)iez, o) 0
= Wael(205)jez,91) N Wo ((20) ez, 1) # 0.
(2) If T is LR then for any textile orbits (2ij)ijez and (z;)i jez of T if
W ((Zzo)z€Z7Gf*) N W (( zO)ZEZvaf*) D 2,
then there is a textile orbit (Z;;); jez, of T such that (Zi)iez = 2,

dz(Zij,2i5) < € Yi,j <0 and dz(zj, 2 i) <€ Vi, j>0.

Using this lemma, one can prove the following two theorems, which are
generahzatlons of Theorems 15 and 12, respectlvely

Theorem 22. Let X be a compact metric space. Let ¢ : X — X
be a topologically transitive, expansive homeomorphism and 7: X — X
positively expansive onto continuous map. If o7 =T and ¢ has POTP
then 7 has POTP and is constant-to-one.

Theorem 23. Let X be an compact metric space. Let ¢ : X — X and -
7 : X — X be positively expansive, onto continuous maps with o1 = 7¢.
If pis topologlcally transitive and has POTP then 7 has POTP.

On the other hand the following lemma can be proved by using Propo-
sition 19.

Lemma 24. Let € >0. Let T = (ix,tx; X — W;py,qv : Y — W) be
an LR e-textile-orbit-system with ¢x 1-1. Let Z be the square space of T.



28

Let f =itz let f* = p;'qz, let g* = pylqy, and let g* be e-expansive.
Then for any textile orbits (2;;); jez and (zgj)i,jez of T if

W ((zi0)iez, 0+) NWE((Zio)iezs 0p4) D 2,
then there is a textile orbit (Z;;); jez of T such that (Zj)iez = 2,

dZ(E,-j,zij) S € VZ,] S 0 and dz(zi]’, Z;J) S € VZ,_] 2 0.

Let 7 : X — X be an expansive onto continuous map of a compact
metric space. An onto continuous map ¢ : X — X is called an LR
endomorphism of (X, ) if there are ¢ > 0 and an LR e-textile- orbit-
system T = (ix,tx : X — W;py,qv : Y — W) such that 7 = i3ty
and ¢ = qzp;' with T e-expansive, where Z is the square space of T.
We define a positively LR endomorphismof (X, 7) by replacing ‘with
e-expansive’ by ‘with 7 positively e-expansive’ in this defnition. We say
that ¢ is an essentially LR endomorphism of (X, 7) if there are an onto
continuous map 7' : X' — X', an LR endomorphism ¢’ of (X', 7'), and a
conjugacy v : (X,7) — (X', 7') such that ¢ = ¥~ and 7 = = 17'4.
We define an essentially positively LR endomorphism similarly.

By using Lemma 24, the following theorem can be proved.

Theorem 25. Let 7 : X — X be an expansive onto continuous map of
a compact metric space and ¢ an essentially LR automorphism of (X, 7).

If 7 has CC, then so does ¢.

This theorem is closely related with the result of Boyle and Lind [BL]
that if one direction in a ‘expansive component’ of directions for a Z¢
action on a compact metric space, is Markov, then so are all the directions
of the component. For a ‘Markov direction’ is a generalized notion of an
expansive Z%action with canonical coordinates and one can see that if 7
and ¢ are expansive homeomorphisms of a compact metric space X, then
there are m and n in N such that ¢™ is an essentially LR automorphism
of (X, ") if and only if the directions of 7 and ¢ are in the same expansive
component of directions for the Z?-action generated by 7 and .

Proposition 26. Let 7 : X — X be an expansive onto continuous map
of a compact metric space and ¢ an automorphism of (X, 7). Then for
all sufficiently large n, 7" is an essentially LR endomorphism of (X, 7).
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Proposition 27. Let 7 : X — X be an expansive onto continuous
map of a compact metric space and ¢ an essentially LR endomorphism
of (X, 7). Then the following statements are valid:

(1) for all integers m,n > 0,¢™7" is an essentially LR endomorphism
of (X, 7);
(2) for all integers m > 0 and n > 1, ™7™ is expansive.

Propositon 28. Let 7 : X — X be a positively expansive onto
continuous map of a compact metric space and ¢ an onto endomorphism
of (X, 7). Then the following statements are valid.

(1) If ¢ is an essentially positively LR endomorphism of (X, 7), then
©™7" is an essentially positively LR endomorphism of (X, 7) for all inte-
gers m,n > 0 and positively expansive for all integers m > 0 and n > 1.

(2) If ¢ is positively expansive, then ¢ is an essentially positively LR

endomorphism of (X, 7).

Corollary 29. If 7 : X — X and ¢ : X — X are commuting positively
expansive onto continuous maps of a compact metric space, then 7 is
positively expansive.

Let Y be a compact metric space. Let f : Y — Y be an onto continuous
map and g : Y — Y be an expansive onto continuous map with fg =gf.
We say that f is a directionally LR endomorphism of (Y,g) if there are
m,n € N such that f™ is an essentially LR endomorphism of (Y, g").

Theorem 30. Let Y be a compact metric space. Let H(Y) denote the
group of homeomorphisms of Y onto itself, and E(Y) the set of expansive
homeomorphisms in H(Y). If we write f; ~ f, for fi € H(Y) and
f2 € E(Y) to mean that f; is a directionally LR automorphism of (Y, f3),
then the following statements are valid.

(1) If f € E(Y), then f ~ f.

(2) If f1, fo € E(Y) and fi ~ f, then fo ~ fi.

(3) If f1 € H(Y) and fo, fs € E(Y) with fi1fs = fsf1, then f ~ f; and
f2~ f3imply f1 ~ fs.

(4) If f € E(Y) and g € H(Y) with fg = gf, then there is m € N
such that f"g ~ f for all n > m.

(5) If fi ~ gand fy ~ g with fi, fs € H(Y),g€ E(Y)and fifo = fafi,
then if there are integers m,n > 0 such that f{*f? € E(Y'), then fif; €
E(Y) and fifa~g.
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Thusfor f € E(Y') and a commutative subgroup K of H(Y') containing
f, we define '

Cx(f)={9€K |g~ f}

and call this the DLR cone containing f in K.
- This notion is closely related with that of an expansive component of
1-frames for a Z%action in the theory of Boyle and Lind [BL)].

Theorem 31. An expansive directionally LR automorphism of a topo-
logical Markov shift is an essentially LR automorphism of the shift.

Theorem 32. Let n € N. If 7,---,7, are pairwise commuting, ex-
pansive homeomorphisms with POTP, of a 0-dimensional compact metric
space X, and if they belong to the same ELR cone, then there are m €
N and pairwise commutlng nonnegative integral matrices M, -, M,
such that (X, 7. .. 7k, ) is conjugate to the topological Markov shift

whose defining matrix is M - .. M} for all integers ky,---, k, > 0 with

(kl,---,kn)#(O,"',O).
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