Unbounded C^* -seminorms and *-representations of *-algebras

福岡大学理学部応用数学科 荻 秀和(Hidekazu Ogi)

1. INTRODUCTION

Unbounded C^* -seminorms on *-algebras in the sense that they are C^* -seminorms defined on *-subalgebras have appeared in many mathematical and physical subjects (for example, locally convex *-algebras and the quantum field theory etc.). But this systematical study has not yet done sufficiently. The main purpose of this paper is to do a systematical study of unbounded C^* -seminorms and to apply it to a study of unbounded *-representations.

The paper is organized as follows: In Section 2 we construct unbounded *representations of a *-algebra from unbounded C^* -seminorms and investigate them. Let \mathcal{A} be a *-algebra. Let p be a C^* -seminorm defined on \mathcal{A} . Every *representation of the Hausdorff completion of (A, p) gives rise to a *representation of A into bounded Hilbert space operators. However, there are a number of situations in which natural C^* -seminorms are defined on *-subalgebras of A. Then they should lead to unbounded operator representations of A. An unbounded m^* -(resp. C^* -)seminorm is a submultiplicative * (resp. p defined on a *-subalgebra $\mathcal{D}(p)$ of $\equiv \{x \in \mathcal{D}(p); ax \in \mathcal{D}(p), \forall a \in \mathcal{A}\}\$ is a left ideal of \mathcal{A} . It is shown that any *representation $\Pi_p \colon \mathcal{A}_p \longrightarrow \mathfrak{B}(\mathcal{H})$ of the Hausdorff completion \mathcal{A}_p of $(\mathcal{D}(p), p)$ leads to an unbounded *-representation π_p of \mathcal{A} such that $\|\overline{\pi_p(x)}\| \leq p(x)$ for all $x \in \mathcal{D}(p)$. We denote by $\text{Rep}(\mathcal{A}, p)$ the set of all such *-representations π_p of \mathcal{A} . In order to investigate representations in Rep(A, p) in details, we introduce the notions of nondegenerate, finite, uniformly semifinite, semifinite and weakly semifinite unbounded C^* -seminorms, and show that if p is (weakly) semifinite, then there exists a strongly nondegenerate *-representation π_p in Rep(A, p) such that $\|\overline{\pi_p(x)}\| = p(x)$ for all $x \in \mathcal{D}(p)$. Such a π_p is called well-behaved. In Section 3 we consider the converse direction of Section 2. We construct an unbounded C^* -seminorm r_{π} on \mathcal{A} from a *-representation π of \mathcal{A} and a natural representation $\pi_{r_{\pi}}^N$ of \mathcal{A} constructed from r_{π} which is the restriction of the closure $\tilde{\pi}$ of π . It is shown that π is strongly nondegenerate if and only if $\pi_{r_{\pi}}^N$ is a well-behaved *-representation of \mathcal{A} . Further, it is shown that if p is a weakly semifinite unbounded C^* -seminorm on \mathcal{A} and π_p is any well-behaved *-representation, then r_{π_p} is a maximal extension of p.

2. REPRESENTATIONS INDUCED BY UNBOUNDED C^* -SEMINORMS

In this section we construct a family of *-representations of a *-algebra A induced by an unbounded C^* -seminorm on \mathcal{A} and investigate the properties. We begin with the review of (unbounded) *-representations of A. Throughout this section let A be a *-algebra. Let D be a dense subspace in a Hilbert space H and let $\mathcal{L}^{\dagger}(\mathcal{D})$ denote the set of all linear operators X in \mathcal{H} with the domain \mathcal{D} for which $X\mathcal{D} \subset \mathcal{D}$, $\mathcal{D}(X^*) \supset \mathcal{D}$ and $X^*\mathcal{D} \subset \mathcal{D}$. Then $\mathcal{L}^{\dagger}(\mathcal{D})$ is a *-algebra under the usual operations and the involution $X \to X^{\dagger} \equiv X^* | \mathcal{D}$. A *-subalgebra of the *-algebra $\mathcal{L}^{\dagger}(\mathcal{D})$ is said to be an O^* -algebra on \mathcal{D} in \mathcal{H} . A *-representation π of \mathcal{A} on a Hilbert space \mathcal{H} with a domain \mathcal{D} is a *-homomorphism of \mathcal{A} into $\mathcal{L}^{\dagger}(\mathcal{D})$ and $\pi(1)=I$ if \mathcal{A} has identity 1, and then we write \mathcal{D} and \mathcal{H} by $\mathcal{D}(\pi)$ and \mathcal{H}_{π} , respectively. Let π_1 and π_2 be *-representations of \mathcal{A} . If \mathcal{H}_{π_1} is a closed subspace of \mathcal{H}_{π_2} and $\pi_1(x) \subset \pi_2(x)$ for each $x \in \mathcal{A}$, then π_2 is said to be an extension of π_1 and denoted by $\pi_1 \subset \pi_2$. In particular, if $\pi_1 \subset \pi_2$ and $\mathcal{H}_{\pi_1} = \mathcal{H}_{\pi_2}$, then π_2 is said to be an extension of π_1 as the same Hilbert space. Let π be a *representation of A. If $\mathcal{D}(\pi)$ is complete with the graph topology t_{π} defined by the family of seminorms $\left\{\|\bullet\|_{\pi(x)} \equiv \|\bullet\| + \|\pi(x)\bullet\|; x \in \mathcal{A}\right\}$, then π is said to be closed. It is well known that π is closed if and only if $\mathcal{D}(\pi) = \bigcap_{x \in \mathcal{A}} \mathcal{D}(\overline{\pi(x)})$. The

closure $\tilde{\pi}$ of π is defined by $\mathcal{D}(\tilde{\pi}) = \bigcap_{x \in \mathcal{A}} \mathcal{D}(\overline{\pi(x)}) \text{ and } \tilde{\pi}(x)\xi = \overline{\pi(x)}\xi \text{ for } x \in \mathcal{A}, \ \xi \in \mathcal{D}(\tilde{\pi}).$

Then $\tilde{\pi}$ is the smallest closed extension of π . The weak commutant $\pi(\mathcal{A})$ w of π is defined by

$$\pi(\mathcal{A})'_{w} = \left\{ C \in \mathfrak{B}(\mathcal{H}_{\pi}); C\pi(x)\xi = \pi(x^{*})^{*}C\xi, \ \forall x \in \mathcal{A}, \ \forall \xi \in \mathcal{D}(\pi) \right\},$$

where $\mathfrak{B}(\mathcal{H}_{\pi})$ is the set of all bounded linear operators on \mathcal{H}_{π} , and it is a weakly closed *-invariant subspace of $\mathfrak{B}(\mathcal{H}_{\pi})$, but it is not necessarily an algebra. It is known that $\pi(\mathcal{A})$ $\mathcal{D}(\pi) \subset \mathcal{D}(\pi)$ if and only if $\pi(\mathcal{A})$ is a von Neumann algebra and $\overline{\pi(x)}$ is affiliated with the von Neumann algebra $\pi(\mathcal{A})$ of or each $\pi(\mathcal{A})$ for each $\pi(\mathcal{A})$ of $\pi(\mathcal{A})$ is affiliated with the von Neumann algebra $\pi(\mathcal{A})$ of $\pi(\mathcal{A})$ is affiliated with the von Neumann algebra $\pi(\mathcal{A})$ of $\pi(\mathcal{A})$ of $\pi(\mathcal{A})$ is affiliated with the von Neumann algebra $\pi(\mathcal{A})$ of $\pi(\mathcal{A})$ of $\pi(\mathcal{A})$ is affiliated with the von Neumann algebra $\pi(\mathcal{A})$ of $\pi(\mathcal{A})$ of $\pi(\mathcal{A})$ is affiliated with the von Neumann algebra $\pi(\mathcal{A})$ of $\pi(\mathcal{A})$ of $\pi(\mathcal{A})$ is affiliated with the von Neumann algebra $\pi(\mathcal{A})$ of $\pi(\mathcal{A})$ of $\pi(\mathcal{A})$ is affiliated with the von Neumann algebra $\pi(\mathcal{A})$ of $\pi(\mathcal{A})$ of $\pi(\mathcal{A})$ is affiliated with the von Neumann algebra $\pi(\mathcal{A})$ of $\pi(\mathcal{A})$ is affiliated with the von Neumann algebra $\pi(\mathcal{A})$ is a $\pi(\mathcal{A})$ in $\pi(\mathcal{A})$ is a $\pi(\mathcal{A})$ in $\pi(\mathcal{A})$ in $\pi(\mathcal{A})$ in $\pi(\mathcal{A})$ is a $\pi(\mathcal{A})$ in $\pi(\mathcal{A})$ in $\pi(\mathcal{A})$ in $\pi(\mathcal{A})$ in $\pi(\mathcal{A})$ in $\pi(\mathcal{A})$ is a $\pi(\mathcal{A})$ in $\pi(\mathcal{A})$ i

Definition 2.1. A mapping p of a subspace $\mathcal{D}(p)$ of \mathcal{A} into $\mathbb{R}^+ = [0, \infty)$ is said to be an unbounded (semi) norm on \mathcal{A} if it is a (semi) norm on $\mathcal{D}(p)$, and p is said to be an unbounded m^* -(resp. C^* -) (semi) norm on \mathcal{A} if $\mathcal{D}(p)$ is a *-subalgebra of \mathcal{A} and p is a submultiplicative *-(resp. C^* -) (semi) norm on $\mathcal{D}(p)$.

If a seminorm p on a *-algebra \mathcal{A} is a C^* -seminorm, that is, it satisfies the C^* -property $p(x^*x) = p(x)^2$, $\forall x \in \mathcal{A}$, then it is a m^* -seminorm on \mathcal{A} , that is, $p(x^*) = p(x)$ and $p(xy) \le p(x)p(y)$ for $\forall x, y \in \mathcal{A}$.

Let p be an unbounded C^* -seminorm on A. We put

$$N_p = \left\{ x \in \mathcal{D}(p); p(x) = 0 \right\} \text{ and } \mathfrak{N}_p \equiv \left\{ x \in \mathcal{D}(p); ax \in \mathcal{D}(p), \ \forall a \in \mathcal{A} \right\}.$$

Then N_p is a *-ideal of $\mathcal{D}(p)$ and \mathfrak{N}_p is a left ideal of \mathcal{A} , and the quotient *-algebra $\mathcal{D}(p)/N_p$ is a normed *-algebra with the C^* -norm $\|x+N_p\|_p \equiv p(x)$ $(x \in \mathcal{D}(p))$. We denote by \mathcal{A}_p the C^* -algebra obtained by the completion of $\mathcal{D}(p)/N_p$, and denote by $\operatorname{Rep}(\mathcal{A}_p)$ the set of all *-representations Π_p of the C^* -algebra \mathcal{A}_p on Hilbert space \mathcal{H}_{Π_p} . Put

$$\operatorname{FRep}(A_p) = \left\{ \Pi_p \in \operatorname{Rep}(A_p); \Pi_p \text{ is faithful} \right\}$$

$$\operatorname{FNRep}(\mathcal{A}_p) = \left\{ \Pi_p \in \operatorname{Rep}(\mathcal{A}_p); \Pi_p \text{ is faithful and nondegenerate} \right\}.$$

It is well known that $\operatorname{FNRep}(A_p) \neq \emptyset$. For each $\Pi_p \in \operatorname{Rep}(A_p)$ we can define a bounded *-representation π_p^0 of $\mathcal{D}(p)$ on the Hilbert space \mathcal{H}_{Π_p} by

$$\pi_p^0(x) = \Pi_p(x+N_p), x \in \mathcal{D}(p).$$

The natural question arises: Can we extend the bounded *-representation π_p^0 of the

*-algebra $\mathcal{D}(p)$ to a (generally unbounded) *-representation of the *-algebra \mathcal{A} ? We show that this question has affirmative answer.

Proposition 2.2. Let p be an unbounded C^* -seminorm on \mathcal{A} . For any $\Pi_p \in \operatorname{Rep}(\mathcal{A}_p)$, there exists a *-representation π_p of \mathcal{A} on a Hilbert space \mathcal{H}_{π_p} such that $\|\overline{\pi_p(b)}\| \leq p(b)$ for each $b \in \mathcal{D}(p)$. In particular, if $\Pi_p \in \operatorname{FRep}(\mathcal{A}_p)$, then $\|\overline{\pi_p(x)}\| = p(x)$ for each $x \in \mathfrak{N}_p$.

Proof. We put

$$\mathcal{D}(\pi_p) = \text{linear span of } \left\{ \Pi_p(x + N_p)\xi; x \in \mathfrak{N}_p, \text{ and } \xi \in \mathcal{H}_{\Pi_p} \right\}$$

$$\pi_p(a) \left(\sum_k \Pi_p(x_k + N_p)\xi_k \right) = \sum_k \Pi_p(ax_k + N_p)\xi_k \quad \text{(finite sums)}$$

$$\text{for } a \in \mathcal{A}, \ \{x_k\} \subset \mathfrak{N}_p \text{ and } \{\xi_k\} \subset \mathcal{H}_{\Pi_p}$$

Since

$$\begin{split} \left(\Pi_{p}(ax+N_{p})\xi\middle|\Pi_{p}(y+N_{p})\eta\right) &= \left(\xi\middle|\Pi_{p}\left((ax+N_{p})^{*}(y+N_{p})\right)\eta\right) \\ &= \left(\xi\middle|\Pi_{p}(x^{*}a^{*}y+N_{p})\eta\right) \\ &= \left(\xi\middle|\Pi_{p}(x^{*}+N_{p})\Pi_{p}(a^{*}y+N_{p})\eta\right) \\ &= \left(\Pi_{p}(x+N_{p})\xi\middle|\Pi_{p}(a^{*}y+N_{p})\eta\right) \end{split}$$

for each $a \in \mathcal{A}$, $x, y \in \mathfrak{N}_p$ and $\xi, \eta \in \mathcal{H}_{\Pi_p}$, it follows that $\pi_p(a)$ is a well-defined linear operator on $\mathcal{D}(\pi_p)$ for each $a \in \mathcal{A}$, so that it is easily shown that π_p is a *-representation of \mathcal{A} on the Hilbert space $\mathcal{H}_{\pi_p} \equiv \left[\mathcal{D}(\pi_p)\right] = \overline{\mathcal{D}(\pi_p)}$ (the closure of $\mathcal{D}(\pi_p)$ in \mathcal{H}_{Π_p}) with domain $\mathcal{D}(\pi_p)$. Take an arbitrary $b \in \mathcal{D}(p)$. By the definition of π_p we have $\pi_p(b) = \pi_p^{\circ}(b) |\mathcal{D}(\pi_p)$, and hence

$$\|\overline{\pi_p(b)}\| \le \|\Pi_p(b+N_p)\| \le \|b+N_p\|_p = p(b).$$

Suppose $\Pi_p \in \operatorname{FRep}(\mathcal{A}_p)$ and $x \in \mathfrak{N}_p$. It is sufficient to show that $\|\overline{\pi_p(x)}\| \ge p(x)$. If p(x)=0, then it is obvious. Suppose $p(x) \ne 0$. We put $y = \frac{x}{p(x)} \in \mathfrak{N}_p$. For each $\xi \in \mathcal{H}_{\Pi_p}$ with $\|\xi\| \le 1$, we have

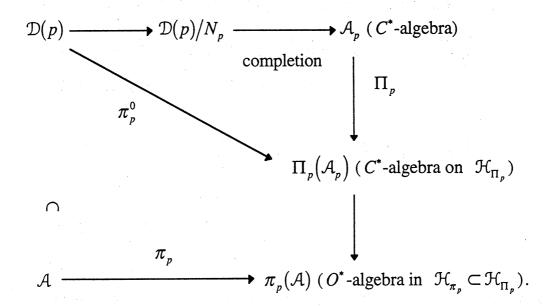
$$\|\Pi_p(y+N_p)\xi\| \le \|\Pi_p(y+N_p)\|\|\xi\| = p(y)\|\xi\| \le 1,$$

and so

$$\begin{split} \left\| \overline{\pi_{p}(y)} \right\| &= \left\| \overline{\pi_{p}(y^{*})} \right\| \geq \sup \left\{ \left\| \pi_{p}(y^{*}) \Pi_{p}(y + N_{p}) \xi \right\|; \xi \in \mathcal{H}_{\Pi_{p}} \text{ s.t. } \|\xi\| \leq 1 \right\} \\ &= \sup \left\{ \left\| \Pi_{p}(y^{*}y + N_{p}) \xi \right\|; \xi \in \mathcal{H}_{\Pi_{p}} \text{ s.t. } \|\xi\| \leq 1 \right\} \\ &= \left\| \Pi_{p}(y^{*}y + N_{p}) \right\| \\ &= p(y^{*}y) = p(y)^{2} = 1. \end{split}$$

Hence, we have $\|\overline{\pi_p(x)}\| \ge p(x)$. This completes the proof.

We have the following diagram:



Remark: The *-representation π_p of \mathcal{A} defined above by an unbounded C^* -seminorm p on \mathcal{A} and an element Π_p of $\operatorname{Rep}(\mathcal{A}_p)$ is non-zero if and only if \mathcal{A} $\mathfrak{N}_p \not\subset N_p$. In what follows, we discuss several situations keeping this in mind.

Let p be an unbounded C^* -seminorm on \mathcal{A} . We denote by $\operatorname{Rep}(\mathcal{A}, p)$, $\operatorname{FRep}(\mathcal{A}, p)$ and $\operatorname{FNRep}(\mathcal{A}, p)$ the sets of all *-representations of \mathcal{A} constructed as above by (\mathcal{A}, p) , that is,

$$\begin{split} &\operatorname{Rep}(\mathcal{A}, p) \!=\! \left\{ \pi_p; \Pi_p \in \operatorname{Rep}\!\left(\mathcal{A}_p\right) \right\}, \\ &\operatorname{FRep}(\mathcal{A}, p) \!=\! \left\{ \pi_p; \Pi_p \in \operatorname{FRep}\!\left(\mathcal{A}_p\right) \right\}, \\ &\operatorname{FNRep}(\mathcal{A}, p) \!=\! \left\{ \pi_p; \Pi_p \in \operatorname{FNRep}\!\left(\mathcal{A}_p\right) \right\}. \end{split}$$

Definition 2.3. An unbounded m^* -seminorm q on \mathcal{A} is said to be nondegenerate if $\mathcal{D}(q)^2$ is total in $\mathcal{D}(q)$ with respect to the seminorm q. An unbounded m^* -seminorm q on \mathcal{A} is said to be finite if $\mathcal{D}(q) = \mathfrak{N}_q$; and q is said to be uniformly semifinite if there exists a net $\{u_\alpha\}$ in \mathfrak{N}_q such that $u_\alpha^* = u_\alpha$ and $q(u_\alpha) \le 1$ for each α and $\lim_{\alpha} q(xu_\alpha - x) = 0$ for each $x \in \mathcal{D}(q)$; and q is said to be semifinite if \mathfrak{N}_q is dense in $\mathcal{D}(q)$ with respect to the seminorm q. An unbounded C^* -seminorm p on \mathcal{A} is said to be weakly semifinite if $\operatorname{FRep}^{WB}(\mathcal{A}, p) = \{\pi_p \in \operatorname{FRep}(\mathcal{A}, p); \mathcal{H}_{\pi_p} = \mathcal{H}_{\Pi_p}\} \neq \emptyset$. An element π_p of $\operatorname{Rep}^{WB}(\mathcal{A}, p)$ is said to be a well-behaved *-representation of \mathcal{A} in $\operatorname{Rep}(\mathcal{A}, p)$.

Definition 2.4. A *-representation π of \mathcal{A} is said to be nondegenerate if $[\pi(\mathcal{A})\mathcal{D}(\pi)] = \mathcal{H}_{\pi}$; and π is said to be strongly nondegenerate if there exists a left ideal \mathcal{I} of \mathcal{A} contained in the bounded part $\mathcal{A}_b^{\pi} \equiv \left\{x \in \mathcal{A}; \overline{\pi(x)} \in \mathfrak{B}(\mathcal{H}_{\pi})\right\}$ of π such that $[\overline{\pi(\mathfrak{I})}\mathcal{H}_{\pi}] = \mathcal{H}_{\pi}$.

Proposition 2.5. Let p be an unbounded C^* -seminorm on \mathcal{A} . Then the following statements hold:

- (1) $\operatorname{Rep}^{\operatorname{WB}}(A, p) \subset \operatorname{FNRep}(A, p)$ and every $\pi_p \in \operatorname{Rep}^{\operatorname{WB}}(A, p)$ satisfies the following conditions (i), (ii) and (iii):
 - (i) $\left[\overline{\pi_p(\mathfrak{N}_p)}\mathcal{H}_{\pi_p}\right] = \mathcal{H}_{\pi_p}$, and π_p is strongly nondegenerate.
 - (ii) $\|\overline{\pi_p(x)}\| = p(x), \quad \forall x \in \mathcal{D}(p).$

(iii)
$$\pi_p(\mathcal{A})'_{w} = \overline{\pi_p(\mathcal{D}(p))}'$$
 and $\pi_p(\mathcal{A})'_{w} \mathcal{D}(\pi_p) \subset \mathcal{D}(\pi_p)$.

Conversely suppose $\pi_p \in \operatorname{FRep}(A, p)$ satisfies conditions (i) and (ii) above. Then there exists an element $\pi_p^{\operatorname{WB}}$ of $\operatorname{Rep}^{\operatorname{WB}}(A, p)$ which is a representation of π_p .

- (2) Suppose p is semifinite. Then $\operatorname{Rep}^{\operatorname{WB}}(\mathcal{A}, p) = \operatorname{FNRep}(\mathcal{A}, p)$ and \mathfrak{N}_p^2 is total in $\mathcal{D}(p)$ with respect to p, and so p is nondegenerate.
 - (3) Suppose p is uniformly semifinite. Then $\mathcal{A}_{b}^{\pi_{p}} = \mathcal{A}_{b}^{p} \equiv \left\{ a \in \mathcal{A}; \ ^{\exists}k_{a} > 0 \text{ s.t. } p(ax) \leq k_{a}p(x), \ ^{\forall}x \in \mathfrak{R}_{p} \right\},$ $\left\| \overline{\pi_{p}(b)} \right\| = \sup \left\{ p(bx); x \in \mathfrak{R}_{p} \text{ and } p(x) \leq 1 \right\}, \ \ ^{\forall}b \in \mathcal{A}_{b}^{p}$

for each $\pi_p \in \operatorname{FRep}(A, p)$.

(4) p is finite if and only if $\mathcal{D}(p)$ is a left ideal of A.

3. UNBOUNDED C*-SEMINORMS DEFINED BY *-REPRESENTATIONS

In Section 2 we constructed a family $\operatorname{Rep}(\mathcal{A},p)$ (resp. $\operatorname{Rep}^{\operatorname{WB}}(\mathcal{A},p)$) of *-representation of \mathcal{A} from an (resp. weakly semifinite) unbounded C^* -seminorm p on \mathcal{A} . Conversely we shall construct an unbounded C^* -seminorm r_{π} on \mathcal{A} from a *-representation π of \mathcal{A} and the natural representation $\pi^N_{r_{\pi}}$ of \mathcal{A} constructed from r_{π} , and investigate the relation π and $\pi^N_{r_{\pi}}$. Let π be a *-representation of \mathcal{A} on a Hilbert space \mathcal{H}_{π} . We put

$$\mathcal{A}_{b}^{\pi} = \left\{ x \in \mathcal{A}; \overline{\pi(x)} \in \mathfrak{B}(\mathcal{H}_{\pi}) \right\} \text{ and } \pi_{b}(x) = \overline{\pi(x)}, x \in \mathcal{A}_{b}^{\pi}.$$

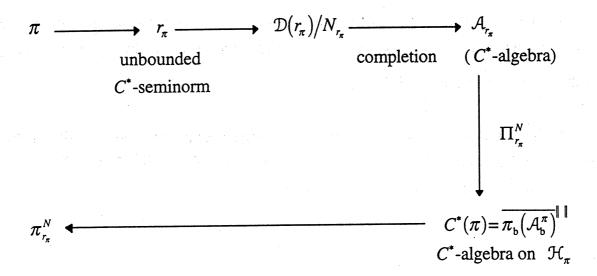
Then \mathcal{A}_b^{π} is a *-subalgebra of \mathcal{A} and π_b is a bounded *-representation of \mathcal{A}_b^{π} on \mathcal{H}_{π} . We denote by $C^*(\pi)$ the C^* -algebra generated by $\pi_b(\mathcal{A}_b^{\pi})$. We now define an unbounded C^* -seminorm r_{π} on \mathcal{A} as follows;

$$\mathcal{D}(r_{\pi}) = \mathcal{A}_{b}^{\pi} \text{ and } r_{\pi}(x) = \|\pi_{b}(x)\|, \quad x \in \mathcal{D}(r_{\pi}).$$

Then we put

$$\Pi(x+N_{r_{\pi}})=\pi_{b}(x), \quad x\in \mathcal{A}_{b}^{\pi}.$$

Since $\|\Pi(x+N_{r_{\pi}})\| = r_{\pi}(x) = \|x+N_{r_{\pi}}\|_{r_{\pi}}$ for each $x \in \mathcal{A}_{b}^{\pi}$, it follows that Π can be extended to a faithful *-representation $\Pi_{r_{\pi}}^{N}$ of $\mathcal{A}_{r_{\pi}}$ on the Hilbert space \mathcal{H}_{π} . The *-representation $\pi_{r_{\pi}}^{N}$ of \mathcal{A} defined by $\Pi_{r_{\pi}}^{N}$ as above is called the natural representation of \mathcal{A} induced by π . Since $\mathcal{H}_{\Pi_{r_{\pi}}^{N}} = \mathcal{H}_{\pi}$, it follows that $\mathcal{H}_{\pi_{r_{\pi}}^{N}}$ is a closed subspace of \mathcal{H}_{π} . We simply note the above method of the construction of $\pi_{r_{\pi}}^{N}$ by the following diagram:

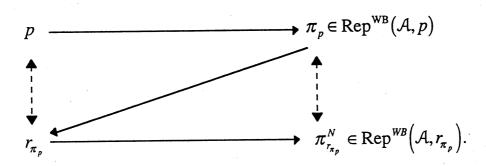


We have the following results for the relation of π and $\pi_{r_{\pi}}^{N}$:

Proposition 3.1. Suppose π is a *-representation of $\mathcal A$ on a Hilbert space $\mathcal H_\pi$. Then the following statements hold:

- $(1) \quad \pi_{r_{\pi}}^{N} \subset \tilde{\pi}.$
- (2) Suppose π_b is nondegenerate. Then $\pi_{r_{\pi}}^{N} \in \text{FNRep}(A, r_{\pi})$.
- (3) π is strongly nondegenerate if and only if $\pi_{r_n}^N \in \text{Rep}^{WB}(\mathcal{A}, r_n)$. If this is true, then $\pi_{r_n}^N$ is strongly nondegenerate with $\mathcal{A}_b^{\pi_{r_n}^N} = \mathcal{A}_b^{\pi}$, and r_n is weakly semifinite.
- (4) Suppose there exists a net $\{u_{\alpha}\}$ in $\mathfrak{N}_{r_{\pi}}$ such that $s \lim_{\alpha} \pi(u_{\alpha}) = I$ and $s \lim_{\alpha} \pi(au_{\alpha}) = \pi(a)$ for each $a \in \mathcal{A}$. Then $\pi_{r_{\pi}}^{N} = \tilde{\pi}$.

By Proposition 3.1 we have the following diagram:



We here investigate the relations of unbounded C^* -seminorms p and r_{π_p} and the *-representation π_p and $\pi_{r_{\pi_p}}$. We first define an order relation among unbounded seminorms as follows:

Definition 3.2. Let p and q be unbounded seminorms on \mathcal{A} . We say that p is an extention of q (or q is a restriction of p) if $\mathcal{D}(q) \subset \mathcal{D}(p)$ and q(x) = p(x) for each $x \in \mathcal{D}(q)$, and then denote by $q \subset p$.

We denote by $C^*N(A)$ the set of all unbounded C^* -seminorms on A. Then $C^*N(A)$ is an ordered set with the order \subset . For any $p \in C^*N(A)$ we put $C^*N(p) = \{q \in C^*N(A); p \subset q\}$.

Then it follows from Zorn's lemma that $C^*N(p)$ has a maximal element. We show that if p is weakly semifinite then r_{π_p} is a maximal element of $C^*N(p)$.

Lemma 3.3. Let p and r be unbounded C^* -seminorms on \mathcal{A} . Suppose $p \subset r$. Then, for any $\pi_p \in \text{Rep}(\mathcal{A}, p)$ there exists an element π_r of $\text{Rep}(\mathcal{A}, r)$ such that $\pi_p \subset \pi_r$.

Proposition 3.4. Suppose p is a weakly semifinite unbounded C^* seminorm on \mathcal{A} and $\pi_p \in \operatorname{Rep}^{\operatorname{WB}}(\mathcal{A}, p)$. Then r_{π_p} is a maximal element of $C^*N(p)$ and $r_{\pi_p} = r_{\pi'_p}$ for each π_p , $\pi'_p \in \operatorname{Rep}^{\operatorname{WB}}(\mathcal{A}, p)$.

By Proposition 3.1, (3) and Proposition 3.4 we have the following

Corollary 3.5. Suppose π is a strongly nondegenerate *-representation of \mathcal{A} . Then r_{π} is maximal.

For the relation of *-representation π_p and $\pi_{r_{\pi_p}}^N$ we have the following

Proposition 3.6. Suppose p is a weakly semifinite unbounded C^* seminorm on \mathcal{A} and $\pi_p \in \operatorname{Rep^{WB}}(\mathcal{A}, p)$. Then $\pi_p \subset \pi_{r_{\pi_p}}^N$ and $\pi_{r_{\pi_p}}^N = \pi_p$.

Reference

- 1. J. Alcantara and J. Yngvason, Algebraic quantum field theory and non-commutative moment problems I, Ann. Inst. Henri Poincaré, 48(1988), 147-159.
- 2. G. R. Allan, A spectral theory for locally convex algebras, Proc. London Math. Soc., 15(1965), 399-421.
- 3. S. J. Bhatt, A. Inoue and H. Ogi, On C^* -spectral algebras, to appear in Rend. Circ. Math. Palermo, 1998.
- 4. J. Dixmier, C^* -Algebras, North-Holland Publ. Comp., Amsterdam, 1977.
- 5. M. Dubois-Violette, A generalization of the classical moment problem on *-algebras with applications to relativistic quantum theory I, Commun. Math. Phys., 43(1975), 225-254.: II, Commun. Math. Phys., 54(1977), 151-172.
- 6. M. Fragoulopoulous, Spaces of representations and enveloping l. m. c. *-algebras, Pacific J. Math., 95(1981), 61-73.
- 7. A. Inoue, Locally C^* -algebras, Mem. Fac. Sci. Kyushu Univ., A25(1971), 197-235.
- 8. A. Inoue, On a class of unbounded operator algebras, Pacific J. Math., 65(1976), 77-95.
- 9. T. W. Palmer, Spectral algebras, Rockey Mountain J. Math., 22(1992), 293-327.
- 10. T. W. Palmer, Banach algebras and General Theory of * Algebras, Vol. I, Cambridge Univ. Press, 1995.
- 11. K. Schmüdgen, Lokal multiplikativ kovexe O_p^* -algebren, Math. Nachr., 85(1978), 161-170.
- 12. K. Schmüdgen, Unbounded Operator Algebras and Representation Theory, Birkhäuser Verlag, Basel, Boston and Berlin, 1990.
- 13. J. Yngvason, Algebraic quantum field theory and non-commutative moment problems II, Ann. Inst. Henri Poincaré, 48(1988), 161-173.
- 14. B. Yood, C*-seminorms, Studia Math., 118(1996), 19-26.