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LATTICE IDEALS, THEIR INITIAL IDEALS AND (CO-)GENERIC
'~ MONOMIAL IDEALS

KOHJI YANAGAWA (#Il #E2)

This article is based on a joint work [12] with E. Miller and B. Sturmfels, which
has been submitted to a journal. But §3 contains extra topics and results.

ABSTRACT. Monomial ideals which are generic with respect to either their genera-
tors or irreducible components have minimal free resolutions derived from simplicial
complexes. For a generic monomial ideal, the associated primes satisfy a saturated
chain condition, and the Cohen-Macaulay property implies shellability for both
the Scarf complex and the Stanley-Reisner complex. Reverse lexicographic initial
ideals of generic lattice ideals are generic. Cohen-Macaulayness for cogeneric ideals
is characterized combinatorially; in the cogeneric case the Cohen-Macaulay type is
greater than or equal to the number of irreducible components. Methods of proof
‘include Alexander duality and Stanley’s theory of local h-vectors.

1. GENERICITY OF MONOMIAL IDEALS REVISITED

Let M be a monomial ideal minimally generated by monomials mq,... ,m, in a
polynomial ring S = k[zy,... ,z,] over a field k. For a subset o C {1,...,r}, we
set m, := lem(m; |7 € o), and a, := degm, € N" the exponent vector of m,.

Here mg = 1. For a monomial x* = z7'--- 13", we set deg, (x*) := a;, and we call
supp(x?) := {i|a; # 0} C {1,... ,n} the support of x2.

Definition 1.1. A monomial ideal M = (m;,... ,m,) is called generic if for any
two distinct generators m;, m; of M which have the same positive degree in some
variable zs there exists a third monomial generator m; € M which divides my; ;; =
lem(m;, m;) and satisfies supp(my; j3/mi) = supp(myiz))-

The above definition of genericity is more inclusive than the one given by Bayer-
Peeva-Sturmfels [1], but we will see that this definition permits the same algebraic
conclusions as the one in [1]. There are important families of monomial ideals which
are generic in the sense of Definition 1.1 but not in the sense of [1]. One such family
is the initial ideals of generic lattice ideals as in Theorem 3.3. Here is another one:

Example 1.2. The tree ideal M = ((1_[561‘:173)71_M|Jrl | 0 # I C {1,...,n}) is
generic in the new sense but very far from generic in the old sense. This ideal is
Artinian of colength (n + 1)"~!, the number of trees on n + 1 labelled vertices.

Recall that a monomial ideal M C S can be uniquely written as a finite irredundant
intersection M = ()._, M; of irreducible monomial ideals (i.e., ideals generated by
powers of variables). We say M; is an irreducible component of M.



Definition 1.3. A monomial ideal with irreducible decomposition M = (\_; M; is
called cogeneric if the following condition holds: if distinct irreducible components
M; and M; have a minimal generator in common, there is an irreducible component
M, C M;+M; such that M; and M;+ M; do not have a minimal generator in common.

A monomial ideal M is cogeneric if and only if its Alezander dual ideal M? is
generic. See [11] or Section 4 for the relevant definitions. Cogeneric monomial ideals
will be studied in detail in Section 4. The remainder of this section is devoted to
basic properties of generic monomial ideals.

Let M C S be a monomial ideal minimally generated by monomials my,... ,m,
again. The following simplicial complex on 7 vertices, called the Scarf complex of M,
was introduced by Bayer, Peeva and Sturmfels in [1]:

Ay = {oC{l,...,1}|m; #m, foral r#c}.

Let S(—a,) denote the free S-module with one generator e, in multidegree a,. The
algebraic Scarf complez Fa,, is the free S-module € S(—a,) with the differential

dle,) = Zsign(i,o)-
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where sign(i, o) is (—1)7*! if 4 is the j-th element in the ordering of o. It is known that
Fa,, is always contained in the minimal free resolution of S/M as a subcomplex |1,
§3], although Fx,, need not be acyclic in general. However we will see in Theorem 1.5
that it is acyclic if M is generic, as was the case under the old definition.

Lemma 1.4. Let M = (my,... ,m,) be a generic monomial ideal. If o & Ayy, then
there is a monomial m € M such that m divides m, and supp(m,/m) = supp(m,).

Proof. Choose o ¢ Ay maximal among subsets of {1,... ,r} with label a,. Then
Mg = Mg} for some i € o. If supp(m,/m;) = supp(m,), the proof is done. Other-
wise, there is o 3 j # 1 with deg, m; = deg, m; > 0 for some z,. Since M is generic,
there is a monomial m € M which divides my;;; and satisfies supp(my;;3/m) =
supp(myiz3)- Since my; ;) divides mg, the monomial m has the desired property. O

The following theorem extends results in [1] and is the main result in this section.

Theorem 1.5. A monomial ideal M is generic if and only if the following two hold:
(a) The algebraic Scarf complex Fa,, equals the minimal free resolution of S/M.
(b) No variable x, appears with the same non-zero exponent in m; and m; for any

edge {i,7} of the Scarf complexr A ;.

Proof. Suppose that M is generic. Then (b) is straightforward from the definition,
and, using Lemma 1.4, (a) is proved by the same argument as in [1, Theorem 3.2].
Assuming (a) and (b), we show that M is generic. For any generator m; let
A; = {m; | m; # m; and deg, m; = deg, m; > 0 for some s}.

The set A; can be partially ordered by letting m; < my if my; ;3 divides my; 5. It is
enough to produce a monomial m; as in Definition 1.1 whenever m; € A, is a minimal
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element for this partial order. Supposing, then, that m; is minimal, use (a) to write

v mye;j My j
(1) gt e — ——i-L} e = Z bu,v : d(e{u,v})
; m; m;
{u,v}€Apn

where we may assume (by picking such an expression with a minimal number of
nonzero terms) that the monomials b, , are 0 unless My} divides my; j3. There is
at least one monomial m; such that b;; # 0, and we claim m; & A;. Indeed, m;
divides my; ;; because my ;) does, so if deg,, m; < deg,, m; (which must occur for
some t because m; does not divide m;), then deg,, m; < deg,, m;. Applying (b)
to my, ) we get deg,, my < deg,, m;, and furthermore deg,, myiyy < deg,, myjy,
whence m; ¢ A; by minimality of m;. So if deg,, my;;; > 0 for some s, then either
deg,, my < deg,, m; by (b), or deg, m; < deg,, m; because m; & A;. O

Remark 1.6. Condition (a) in Theorem 1.5 splits into two parts: minimality and
acyclicity. For the Scarf complex of any monomial ideal, minimality is automatic
since face labels a, of Ay, are distinct. It is acyclicity which must be checked.

For an arbitrary monomial ideal M, Bayer and Sturmfels [2, §2] constructed a
polyhedral complex hull(M) supporting a (not necessarily minimal) free resolution of
M. Definition 1.1 suffices to imply that the hull complex equals the Scarf complex:

Proposition 1.7. If M is a generic monomial ideal, then the hull complez hull(M)
coincides with Ay, and in this case the hull resolution Frayary = Fa,, s minimal.

Proof. Essentially unchanged from the proof of [2, Theorem 2.9]. O

Example 1.2 (continued) The Scarf complex Ay of M is the first barycentric sub-
division of the (n — 1)-simplex. By Theorem 1.5, Fa,, gives a minimal free resolution
of S/M. Miller [11] also constructed a minimal free resolution of S/M as a cohull
resolution, derived essentially from the coboundary complex of a permutahedron.
The following figure explains the (algebraic) Scarf complex of the tree ideal M =

(zyz, 2%y?, y?2%, 2222, 23, %, 2%) of three variables.
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2. ASSOCIATED PRIMES AND IRREDUCIBLE COMPONENTS

In this section we study the primary decomposition of a generic monomial ideal M.
For a monomial prime P in S, we identify the homogeneous localization (S/M)p)
with the algebra k[z; | z; € P]/M(p), where M(p) is the monomial ideal of k[z; | z; €
P] gotten from M by setting equal to 1 all the variables not in P.

Remark 2.1. If M is a generic monomial ideal then so is M(p).

Let M = (._, M; be the irreducible decomposition of a monomial ideal M. Then
we have {rad(M;) | 1 < ¢ < r} = Ass(S/M). Note that distinct irreducible compo-
nents may have the same radical. Bayer, Peeva and Sturmfels [1, §3] give a method
for computing the irreducible decomposition of a generic monomial ideal (in the old
definition). The generalization of this method by Miller [11, Theorem 5.12] shows
that [1, Theorem 3.7] remains valid here, as we will show in Theorem 2.2 below.

Recall that codim(I) < codim(P) < proj-dimg(S/I) < n for any graded ideal
I ¢ S and any associated prime P € Ass(S/I), and codim(/) = proj-dimg(S/I)
if and only if S/I is Cohen-Macaulay. There always exists a minimal prime P €
Ass(S/I) with codim(P) = codim(J). But in general there is no P € Ass(S/I)
with codim(P) = proj-dimg(S/I). For example, if I = (z1,z2) N (x3,x4), then
proj-dimg(S/I) = 3.

Theorem 2.2. Let M C S be a generic monomial ideal. Then

(a) For each integer i with codim(M) < i < proj-dimg(S/M), there is an embedded
associated prime P € Ass(S/M) with codim(P) = 1.

(b) For all P € Ass(S/M) there is a chain of associated primes P = Py D P, D
-+-D Py with codim(FP;) = codim(P;_1) — 1 for all i and P; is a minimal prime of M.

Proof. (a) This was proved in [21] under the old definition of genericity. Using The-
orem 1.5 and [11, Theorem 5.12], the argument in [21] also works here.

(b) It suffices to show that for any embedded prime P of M there is an associated
prime P' € Ass(S/M) with codim(P’) = codim(P) —1 and P’ C P. The localization
Ppy of P is a maximal ideal of S(p), and an embedded prime of M(p), so there is
a prime P/py C S(p) such that Pjp) € Ass(S/M)p), codim(P(p)) = codim(Fp)) — 1
and P(py C Fp) by (a) applied to the generic ideal M(p). The preimage P’ C S of
P(’P) C S(py has the expected properties. O

Remark 2.3. Let M C S be a generic monomial ideal, and P, P’ € Ass(S/M) such
that P D P’ and codim P > codim P’ + 2. Theorem 2.2 does not state that there
is an associated prime between P and P’. For example, set M = (ac, bd, a®b?, a®b%).
Then (a,b), (a,b,c,d) € Ass(S/M), but there is no associated prime between them.

Following [1, §3], we next define the extended Scarf complex Ay« of M. Let
(2) M* = M+ (zP,... 20

1¥n
with D larger than any exponent on any minimal generator of M. We index the
new monomials =2 just by their variables z,; so the vertex set of Ay is a subset of
{1,...,7}U{x,... ,z,}. This subset is proper if M contains a power of a variable.
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Recall ([1, Corollary 5.5] for the old genericity or [11, Proposition 5.16] for the new)
that Ay is a regular triangulation of an (n — 1)-simplex A. The vertex set of A
equals {z1,...,%,} unless M contains a power of a variable. The restriction of Aps-
to {1,...,7} equals the Scarf complex Aps of M. We next determine the restriction
of Apre to {z1,... ,Zn}- -

The radical rad(M) of M is a square-free monomial ideal. Let V(M) denote the
corresponding Stanley-Reisner complez, which consists of all subsets of {z1,...,z,}
which are not support sets of monomials in M. Then we have the following:

Lemma 2.4. For a generic monomial ideal M, the restriction of the extended Scarf
complex Ay to {xy, ... ,x,} coincides with the Stanley-Reisner complex V(M).

Proof. Every facet o of Ay~ gives an irreducible component of M; see [1, Theo-
rem 3.7] and [11, Theorem 5.12]. The radical of that component represents the face
oN{zy,...,z,} of V(M). The facets of V(M) arise in this way from the irreducible

components whose associated primes are minimal. O

The following theorem generalizes [21, Corollary 2.4]. For the definition of shella-
bility, see [16, §II1.2] or [22, Lecture 8].

Theorem 2.5. Let M be a generic monomial ideal. If M has no embedded associated
primes, then M is Cohen-Macaulay. In this case, both Ay and V(M) are shellable.

Proof. The first statement immediately follows from Theorem 2.2. For the second
statement we note that all facets o of Ay« have the following property:

(3) lon{1,...,r}| = codimM and |oN{z1,...,2,}| = dim S/M.

In particular, both cardinalities in (3) are independent of the facet o. On the other
hand, A is shellable since it is a regular triangulation of a simplex. A theorem of
Bjérner [3, Theorem 11.13] implies that the restrictions of Ay~ to {1,2,... ,7} and
to {z1,...,z,} are both shellable. We are done in view of Lemma 2.4. O

Remark 2.6. The shellability of A,z also implies the following result. If M is generic
and P, P’ € Ass(S/M), then there is a sequence of associated primes P = P, P, ... ,
P, = P' with codim(P; + P,_;) = min{codim(P;), codim(P;—1)} + 1 forall 1 <7<t
If M is pure dimensional, this simply says that S/M is connected in codimension 1.

Theorem 2.5 and Remark 2.6 suggest the following combinatorial problems:

Problem 2.7. (a) Characterize all collections A of monomial primes for which there
exists a generic monomial ideal M with A4 = Ass(S/M).

(b) Characterize the Stanley-Reisner complexes V(M) of Cohen-Macaulay generic
monomial ideals M.

If we put further restrictions on the generators of a generic monomial ideal M, then,
since the extended Scarf complex Aj is a triangulation of a simplex, we can apply
Stanley’s theory of local h-vectors [16]. The next two results will be reinterpreted in
Section 4 in terms of cogeneric ideals using Alexander duality [11].

Again let M* be as in (2), and define the ezcess of a face o € Ay to be e(o) ==
# supp(m,) — #0. This agrees, in our situation, with the definition of excess in [16].



Theorem 2.8. If M is generic and all v generators my,... ,m, have support of
size ¢, i.e. #supp(m;) = c for all i, then M has at least (c — 1) - r + 1 irreducible
components. '

Example 2.9. This is false without the assumption that M is generic. For instance,
the non-generic monomial ideal M = (21, y1)N...N{(Zy,, yn) has 7 = 2" generators, and
each generator has support of size ¢ = n, but M has only n irreducible components.

Proof. 1If ¢ = 1, there is nothing to prove, so we may assume that ¢ > 2. Set I' = Apy-.
The hypothesis on the generators of M means that I" has n vertices of excess 0 and
r vertices of excess ¢ — 1. To prove the assertion, we use the decomposition

(4) WT,z) = > tw(lw,2)

WeA
of the h-polynomial of T into local h-polynomials [16, eqn. (3)]. Here A denotes the
simplex on {z,... ,z,} and I'w the restriction of I to a face W of A. We have

Next, we consider the case #W = c¢. In the I'y, the vertices corresponding to
generators of M have excess ¢ — 1, and all other faces have excess less than ¢ —1. So
we have

6) Llw(Cw,z) =4L(Tw)z +L(Tw)z® + -+ L (Dw)zt™" i #W =g,
where ¢;(Ty) is the number of generators of M whose support corresponds to the
face W of A by [16, Example 2.3(f)]. Moreover 4;(I'w) > £;(T'w) forall1 <i < c—1
by [16, Theorem 5.2 and Theorem 3.3].

The coefficients of £y (T'w, x) are non-negative for all W € A by [16, Corollary 4.7].
We now substitute the expressions in (5) and (6) into the sum on the right hand side

of (4), and then we evaluate at * = 1. The number of irreducible components of M
equals the number f,_1(T) = h(I',1) of facets of I by [11, Theorem 5.12], hence

R(T,1) > 1+ Z(i&(FW)) > 1+ Z(c-—l)-el(l“w) = (c—1)-7+1.

H#W=c 1= #W=c
This yields the desired inequality. a

The inequality in Theorem 2.8 is sharp for all ¢ and r; see Example 4.17 below.

3. INITIAL IDEALS OF LATTICE IDEALS

One motivation for our new definition of genericity for monomial ideals is con-
sistency with the notion of genericity for lattice ideals introduced in [15]. It is the
purpose of this section to establish this connection. We fix a sublattice £ of Z™ which
contains no nonnegative vectors. The lattice ideal I associated to L is defined by

I; = (x*-x|a,beN*" and a—-beLl) C S,
where x* = z{'---22 for a = (a,...,a,) € N*. The ideal I is homogeneous

with respect to some grading where deg(z;) is a positive integer for each s. We have
codim(I;) = rank(L). Moreover, the ring S/I has a fine grading by Z"/L (cf. [14]).
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The following three conditions are equivalent: (a) The abelian group Z"/L is
torsion free, (b) I is a prime ideal, and (c) I, is a toric ideal (i.e., S/ is an affine
semigroup ring). Even if I, is not prime, all monomials are non-zero divisors of S/I,
and all associated primes of I; have the same codimension. If I4 is the toric ideal
of an integer matrix A, as defined in [19], then I coincides with the lattice ideal I,
where £ C Z" is the kernel of A.

Following Peeva and Sturmfels [15], we call a lattice ideal I generic if it is gener-
ated by binomials with full support, i.e.,

a

Ip = (x® —xP1 x® —xP | 2 by

L, XTT—=XTT
where none of the r vectors a; — b; € Z" has a zero coordinate.

The minimal free resolution of a generic lattice ideal I, is constructed in Peeva and
Sturmfels [15], which is also called the algebraic Scarf complex and denoted by F. If
a (not necessarily generic) codimension 2 lattice ideal is not a complete intersection,
then the minimal free resolution is also attained by the algebraic Scarf complex (see
(14], also [7]). If the minimal free resolution of a lattice ideal I, has the structure
of the algebraic Scarf complex, then we can easily compute the extension module
Ext4(S/Iz,S) for i = proj-dimg S/I; by an argument similar to the proof of [21,
Theorem 2.6], so we can get the following. '

Proposition 3.1. Suppose that the minimal free resolution of a lattice ideal I is
given by the algebraic Scarf complex (e.g. I is generic). If S/I. satisfies Serre’s
condition (S3), then S/I; is Cohen-Macaulay.

The above statement is not true, if I is not generic. (c.f. [4, § 6.2]).

Proposition 3.2. (c.f. [8, Theorem 1.1 (2)] ) Suppose that the minimal free res-
olution of a lattice ideal Iy is given by the algebraic Scarf complex F, (e.g. I is
generic). If S/I; is Gorenstein, then I is a principal ideal.

Proof. If S/I, is Gorenstein, we have Hom(Fy, S) ~ F. up to the degree shifting. So
Hom(Fy, S) gives the minimal free resolution of S/I, again. If codim I; > 2, then I,
must be a monomial ideal by the structure of Hom(Fy, S). This is a contradiction. [

The following is a main result of this section.

Theorem 3.3. Let I be a generic lattice ideal, and M the initial ideal of I, with
respect to a reverse lezicographic term order. Then M is a generic monomial ideal.

Proof. Set M = inyeyiez(Iz) = (M1, ... ,m,). Gasharov, Peeva and Welker [8] proved
that the algebraic Scarf complex Fj,, is a minimal free resolution of S/M. Using
Theorem 1.5, it suffices to prove that no variable z, appears with the same non-zero
exponent in m; and m; for any ¢ # j with {¢,j} € Aj. Assume the contrary, that
is, deg, m; = deg, m; > 0 for some {i,j} € Ap. By [15, Theorem 5.2], there are
three monomials m;, m}, m; € S satisfying the following conditions.
(a) {mj, mj, m;} is a basic fiber (see [15, §2]), in particular, ged(mj, m}, m{) = 1.

J

ged(miml)"

m

m; L —
(b) m: = cemiyy 2nd my =
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By (b), we have deg,_(m}) > deg, (m;) > 0 and deg,, (m}) > deg, (m;) > 0. Since
ged(mj, ms, mj) = 1, we have deg, m; = 0. So deg,, m; = deg,, m; = deg, m; =
deg,, mj. Combining property (a) with [15, Theorem 3.2], we see that the binomial
_ j
ged(m) mg) ged(m, mg)

1)

m m

is a minimal generator of I;. Since deg, m; = deg, m/, the variable z; does not
appear in the above binomial. This contradicts the genericity of I.. O

Example 3.4. Theorem 3.3 is false for the old definition of “generic monomial ideal”
given in [1]. For example, consider the following generic lattice ideal in k[a, b, c, d]:

I; = {(a* = bed,a®c® — b2d?, a?b® — Ad?, ab?c — d®, bt — a®cd, b3 — aPd?, ¢ — abd)

This ideal was featured in [15, Example 4.5]; it defines the toric curve (£29, ¢, 12, ¢31).
Consider a reverse-lexicographic term order with @ > b > ¢ > d. Then M =
(a*, a3, a?b?, ab?c, b, b3c?, ¢®). Since a®c? and b*c* are minimal generators of M, it

is not generic in the sense of [1]. But M satisfies Definition 1.1 since ab’c € M. O

An important problem in combinatorial commutative algebra is to characterize
those monomial ideals which are initial ideals of lattice ideals. The recent “Chain
Theorem” of Hosten and Thomas [10] provides a remarkable necessary condition.

Theorem 3.5 (Hogten—Thomas [10]). Let M be the initial ideal of a lattice ideal
I with respect to any term order. For each P € Ass(S/M), there is a chain of
associated primes P = Py D Py D --- D P, of M such that P, is a minimal prime
and codim(P;) = codim(P;_1) — 1 for all .

In other words, initial ideals of lattice ideals satisfy conclusion (b) of Theorem 2.2,
even if they are not generic. We do not know whether part (a) holds as well.

Conjecture 3.6. Let M be the initial ideal of Iy with respect to some term order.
Then there is an associated prime P € Ass(S/M) with codim(P) = proj-dimg(S/M).

Note that all minimal primes of an initial ideal M have the same codimension.

Corollary 3.7. Conjecture 3.6 holds for the reverse lezicographic term order if the
lattice ideal I is generic.

Proof. Immediate from Theorem 2.2 and Theorem 3.3. O

The following result appears implicitly in the work of Hosten-Thomas [10] and
Peeva-Sturmfels [14].

Lemma 3.8. Let M be the initial ideal of a lattice ideal I with respect to any term
order. Then we have proj-dimg(S/M) < 2¢ — 1 where ¢ := codim I = codim M.

Proof. Following [14, Algorithm 8.2], we construct a lattice ideal I in S[t] =
k[z1,...,2Zn,t] whose images under the substitutions ¢ = 1 and ¢ = 0 are I and
M respectively. Moreover t is a non-zero divisor of S[t]/I;, and the codimen-
sion of I in S[t] is equal to codim(I;). Since S/M = S[t|/(Iz + (t)), we have
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proj-dimg(S/M) = proj-dims[t](S[t] /1) < 2¢— 1. The last inequality follows from
[14, Theorem 2.3]. A O

We note that Conjecture 3.6 is also true in codimension 2. In fact, we can prove
more.

Theorem 3.9. Let M be an initial ideal of a codimension 2 lattice ideal I; C S.
Then the minimal free resolution of M is given by the algebraic Scarf complex Fj,,.

Proof. If M is a complete intersection, then the assertion is obvious. So we may
assume that M is not a complete intersection. Let I, C S[t] = k[z1,... ,Z,,t] be
a lattice ideal whose images under the substitutions t = 1 and ¢t = 0 are I, and M
respectively. Note that M C S C S[t] is an initial ideal of I,» C S[t] with respect to
a reverse lexicographic order for ¢ smallest, and the minimal generators of I, form
a Grobner bases with respect to this term order (see [14, Lemma 8.4]). Since I is
not a complete intersection and has codimension 2, the algebraic Scarf complex F
is the minimal free resolution. Hence the i-faces of A,; are in bijection to the 7 + 1
faces of Ag /L' (see [15] for the definition) for all ¢ by the argument same to [15,
Theorem 5.2]. Since ¢ is a non-zero divisor on S[t]/Iy and S[t]/(I; +t) =~ S/M, the
multi-graded Betti numbers of S/M (over S) coincide with those of S[t]/I (over
S[t]). By the construction of Fyr and the correspondence between the faces of Ay /L'
and Ay, the multi-graded Betti numbers of S/M are concentrated in Ay, parts.
Thus Fa,, is the minimal free resolution. O

An initial ideal of a codimension 2 lattice ideal may not be generic. Set I, :=
{ac — b?,ad — be,bd — ¢?) C S = k[a, b, ¢, d] be the defining ideal of the twisted cubic
curve in P3. S/I. is normal and Cohen-Macaulay. It is known that I has eight
distinct initial ideals, when we consider all possible term orders (see §4 of [18]), but
seven of them are not generic. We also remark that four of the eight initial ideals are
not Cohen-Macaulay and have embedded associated primes of codimension 3.

Corollary 3.10. Conjecture 3.6 holds for any term order if codim(I;) = 2.
Proof. The assertion follows from Theorem 3.9 and [21, Corollary 2.7). O

The above result also holds for the initial ideal in, (/z) with respect to a weight
vector w € R™ (c.f. [19]). Note that in,(I;) is not a monomial ideal in general.
For any term order <, there is a weight vector w € R™ such that in.(I;) = in,(I)
(c.f. [6]). As the usual term order case, we can construct a lattice ideal I in
S[t] = k[z1,... ,z,,t] whose images under the substitutions ¢ = 1 and ¢t = 0 are I
and in, (1) respectively. So Proposition 3.8 also holds for in, ().

Theorem 3.11. Let Iy C S be a lattice ideal of codimension 2, and in,(I;) the
initial ideal with respect to a weight vector w € R™. If proj-dimg(S/in,(I¢)) = 3
(equivalently, S/in,(Iz) is not Cohen-Macaulay) and in,(Iz) # I, then there is a
codimension 3 embedded associated prime of in,(Ir).

Proof. Let I+ C S[t] be a codimension 2 lattice ideal representing the deformation
from I to in, (/). Suppose that proj-dimgy (S[t]/I.) = proj-dimg(S/in,(Iz)) = 3.
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In this case Extf‘g[t](S [t]/Ic, S[t]) # 0. Since the lattice ideal I has pure codimension
2, we have dim(Extg[t](S[t]/I,;r, S[t])) < n —4 by [4, Theorem 8.1.1]. Let F be a
minimal free resolution of S[t]/I.s constructed in [14]. Then Ext}y(S[t]/1.:, S[t)) is
the third cohomology group of the cochain complex (Fg/)* := Homgpy(F,, S[t]). Let
e € (Frr)s be a generator of a free summand in homological degree 3 corresponding
to a syzygy quadrangles (c.f. [14]), and e* € (Fi(,))* its dual. Since e* is a cocy-
cle of (F¢)*, we have the corresponding element e* € Extg[t](S [t]/Ic, S[t]). Then
S[t]/J ~ S[t] - € is a submodule of Extg(S[t]/I., S[t]), where J = ann(e*). By the
construction of Fy,, we have d(e) = Zf‘:l m;-e; where m; is a non-constant monomial
and e; € (F(.))2 is a free base of homological degree 2. Set J' := (mq,--- ,m4) C S[t].
Then J' O J by the construction. We have

(n+1) — 4 < dim(S[#]/J") < dim(S[]/J) < dim(Extyy (S[t)/Ie:, S[H]) < (n+1) — 4

by Krull’s theorem. So dim(S[t]/J) = dim(S[t]/J’) = (n+1)—4. Hence J' is complete
intersection, and all its associated primes have codimension 4. If in, (I;) # I, then
we may assume that t is a zero divisor of S/J', after suitable choice of e € (F)s.
Then there is a monomial prime ideal P C S[t] such that ¢t € P, P € Ass(S[t]/J)
and codim(P) = 4. Since codim J =4 and P D J' D J, we have

P € Ass(S[t)/J) C Ass(Exty (S[1)/1z:, S[H]))-

Since t € P and S/in,(Ic) = S[t]/(Ic + (t)), the image P C S = S[t]/(¢) is an
associated prime of in, (I;) by [13, Corollary 3.2]. Note that codim(P) = 3. So P is
an expected ideal. n

4. A STuDY OF COGENERIC MONOMIAL IDEALS

Cogeneric monomial ideals were introduced in Definition 1.3. As with genericity,
our definition of cogenericity is slightly different from the original one of [20]. In
Theorem 4.6 we shall see that the result of [20], an explicit description of the minimal
free resolution of a cogeneric monomial ideal, is still true here. In fact, Alexander
duality for arbitrary monomial ideals [11] allows us to shorten the construction of
this resolution and clarify its relation to Theorem 1.5. For the reader’s convenience,
we briefly recall the definitions pertaining to Alexander duality. For details see [11].

The maximal N™-graded ideal (zi,...,z,) C S will be denoted by m. Mono-
mials and irreducible monomial ideals may each be specified by a single vector

b= (b,...,b,) € N* so we will write x> = 2% ...z and mP = (2% | b, > 1).
Given a vector a = (aq, ... ,a,) such that b; < a, for all s, we define the Alexander

dual vector b* with respect to a by setting its s*" coordinate to be

ay _ J as+1—=bs ifb;>1
o ={ ez

Whenever we deal with Alexander duality, we assume that we are given a vector a
such that for each s, the integer a; is larger than or equal to the s coordinate of
any minimal monomial generator of M. This implies that a, is also larger than or
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equal to the s*® coordinate of any irreducible component of M, and vice versa. The
Alezander dual ideal M* of M with respect to a is defined by

M® = (x**|mP is an irreducible component of M)
= r]{mca | x°® is a minimal generator of M}.

That these two formulas give the same ideal is not obvious; it is equivalent to (M?)2 =
M. Tt follows from these statements that M is generic if and only if M2 is cogeneric.

Example 4.1. The following monomial ideal in S = k[z,y, 2] is cogeneric:
M = (y2*,z2% 9%z, 0%, 7% = (x,9) N (=% 9% 22 N (z,2).
Its Alexander dual with respect to a = (2,2, 2) is generic:
M? = (%%, zyz,2%2%) = (y%,2) N (2? 2) N (y, 22 N {2? ) N (z).

Example 4.2 ([11, Examples 1.9, 5.22]). If M is the tree ideal of Example 1.2 and
a=(n,...,n), then its Alexander dual M? is the permutahedron ideal:

M2 = (xf(l)xgm -+-z™™ . 7 is a permutation of {1,2,...,n}).

Thus the permutahedron ideal is cogeneric. Its minimal free resolution is the hull
resolution, which is cellular and supported on a permutahedron [2, Example 1.9].
The following discussion reinterprets this resolution as a co-Scarf complex. a

Definition 4.3. Let M = (\._, M; be a cogeneric monomial ideal. Set a = (D —
1,...,D—1) with D larger than any exponent on any minimal generator of M. The
Alexander dual ideal M? is minimally generated by monomials m,,... ,m,, where
m; = xP" for M; = mP. We define the co-Scarf complezx A2, to be the extended
Scarf complex of M?. More precisely, we set (M?)* := M+ (zP ... | z2) and A3,
the Scarf complex of (M?)*. Since we index a new monomial z?2 just by z,, we see
that A3, is a simplicial complex on (a subset of) {1,...,r,z1,... 2.}

Remark 4.4. (a) There is nothing special about our choice of a, except that it makes
for convenient notation. Everything we do with A%, is independent of which suffi-
ciently large a is chosen. In particular, the regular triangulation of the (n—1)-simplex
is independent of a, as is the algebraic co-Scarf complex (Definition 4.5) it determines.
We therefore set a= (D —1,... ,D — 1) for the remainder of this section.

(b) For 0 C {1,...,r}, let M, be the irreducible monomial ideal ", . M;. Then
me = xP7 if M, = mP and A3, N{1,... ,r}={oc C{l,...,r} | M, # M, for all T #
o} is just the Scarf complex of A2

A face o of the co-Scarf complex Aj; fails to be in the (topological) boundary 0A3,
of A3, if and only if the monomial m, has full support, where m, is lem(m; | i € o)
under the notation of Definition 4.3. Such a face will be called an interior face of A3,.
The set int(A3,) of interior faces is closed under taking supersets; that is, int(A%,) is
a simplicial cocomplex. Just as the algebraic Scarf complex is constructed from A,
for generic M, we construct an algebraic free complex from int(A3%,), but this time
we use the coboundary map instead of the boundary map. The following is a special
kind of relative cocellular resolution (in fact a cohull resolution) [11, §5].
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Definition 4.5. Let D = (D,...,D) € N* and S(a, — D) be the free S-module
with one generator e} in multidegree D — a,. The algebraic co-Scarf complez F*%
of M is the free S-module

@ S(a, —D) with differential d*(e}) = Z sign(z’,au{i})-mgu{i} "€ruli}
mU

o€int{A%,)

i€o
ou{i}€int(A3,)
where sign(i,o U {i}) is (=1)7*! if i is the j-th element in the ordering of o U {i}.
Put the summand S(a, — D) in homological degree n — #¢ = n — dim(o) — 1.

Theorem 4.6. If M is a cogeneric monomial ideal, then the algebraic co-Scarf com-
plez FA% equals the minimal free resolution of M over S. In particular, M 1is mini-
mally generated by the set of monomials {xP~29 | ¢ is a facet of A3}

Proof. This follows from Proposition 1.7 and {11, Theorem 5.8]. a

Example 4.1 (continued) For the cogeneric ideal M = (z,y)N(z?,y?, 2%)N(z, z), the
interior faces of A%, are {2}, {1,2}, {2,3}, {2,z}, {2,9}, {2,2}, {1,2,z}, {1,2,v},
{2,3,z}, {2,3, 2} and {2, y, 2}. The co-Scarf resolutionis 0 =+ § = §°> — §° — M —
0. The generators of M have exponent vectors D —ag1 253 = (0,1,2), D—apy =
(1, 0, 2), D - a3z} = (O, 2, 1), D- a{23,2} = (1, 2, 0) and D — A2,y,z} = (2, 0, 0)

Example 4.2 (continued) The following figure explains the (algebraic) co-Scarf
complex of the permutahedron ideal of three variables.

| ® @ ® @ & ©®
M =<2f, Zra <l o0 <d Er N<E X7 N <22 () <47
' N <E>
@

L ¥
Ay =
6
I:A:' P 0— S 5 3f— S5 7 0
N
1 inferior £ inferion 8 inferiom

veriex ed ges —frces



We saw in Theorem 2.5 that for generic- monomial ideals, the Cohen-Macaulay
condition is equivalent to the much weaker condition of purity (all associated primes
have the same dimension). For cogeneric monomial ideals, on the other hand, purity
is obviously too easy to attain. Nonetheless; a cogeneric ideal is forced to be Cohen—
Macaulay by a priori much weaker conditions. Before stating these in Theorem 4.8,
we characterize depth for cogeneric ideals using a polyhedral criterion.

Lemma 4.7. Let M be a c'oigen‘em'c fnonomz’al ideal. Then depth(S/M) <d if and
only if the co-Scarf complex A3, has an interior face of dimension d.

Proof. By Theorem 4.6, the shifted augmentation F2% — S (obtained by including
coker(F2%) = M into S and shifting homological degrees up one) is a minimal free
resolution of S/M. The co-Scarf complex Aj, has an interior face of dimension d
if and only if this shifted augmented complex is nonzero in homological dimension
n — d. The lemma now follows from the Auslander-Buchsbaum formula. O

Recall that a module N satisfies Serre’s condition (Sk) if for every prime P C S,
depth(Np) < k = depth(Np) = dim(Np). Using [4, Chapter 2.1] and homogeneous
localization, it follows that if S/M satisfies (Sk) then

(7) depth((S/M)p) <k = dim((S/M)p)) = depth((S/M)p)).

Observe that M(py is cogeneric if M is, in analogy to Remark 2.1. For condition (d)
below, recall the definition of ezcess from before Theorem 2.8.

Theorem 4.8. Let M C S be a cogeneric monomial ideal of codimension ¢ with the
irreducible decomposition M = (\;_, M;. Then the following conditions are equivalent.
(a) S/M is Cohen-Macaulay.
(b) S/M satisfies Serre’s condition (Ss).
(c) codim M; = ¢ for all i, and codim(M; + M;) < c+1 for all edges {i,j} € A%,
(d) Every face of A% has excess < c.
(e) A%, has no interior faces of dimension < n —c.

Proof. (a) = (b) : Cohen-Macaulay < (S) for all k.

(b) = (c) : The initial equality follows from [9, Remark 2.4.1], so it suffices to
prove the inequality. Suppose ¢ # j with {3,5} € Aj;. Let P = rad(M; + M;), and
denote by F the face of A = 2{®1%n} whose vertices are the variables in P. By [11,
Proposition 4.6], the co-Scarf complex of M(p) is, as a triangulation of the simplex
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2F  the restriction (A3,)r of the triangulation A3, to 2¥. By our choice of F, {i,7} is

an interior edge of (A%,)r, so Lemma 4.7 1mp11es that depth((S/M)p)) < 1, whence
(7) implies that dim((S/M)(py) < 1. Equivalently, codim(M; + M;) < c+ 1.

(c) = (d) : The purity of the irreducible components means that all vertices have
excess ¢ — 1 or 0, while the condition on the edges implies that the excess of a
nonempty face can only decrease or remain the same upon the addition of a vertex.

(d) = (e) : In particular, the interior faces have excess less than c.

(e) = (a) : Lemma 4.7. - 0

Remark 4.9. Hartshorne [9] proved that a catenary local ring satisfying Serre’s con-
dition (Ss) is pure and connected in codimension 1. The converse is not true even
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for cogeneric monomial ideals. If we take M = (z,3?) N (y, z) N (2%, w) then S/M
is pure and connected in codimension 1, but does not satisfy the condition (S2);
in fact, depth(S/M) = 1. On the other hand, M’ = (z,y) N (¥?,2%) N (z,w) is
Cohen-Macaulay, although Ass(M) = Ass(M').

The above theorem and remark leads to a natural question.

Problem 4.10. Which Cohen-Macaulay simplicial complexes have Stanley-Reisner
ideal rad(M) for some Cohen-Macaulay cogeneric monomial ideal M?

Recall that the type of a Cohen-Macaulay quotient S/M is the nonzero total Betti
number of highest homological degree; if M is cogeneric then this Betti number equals
the number of interior faces of minimal dimension in A%, by Theorem 4.6.

Theorem 4.11. Let M be a Cohen-Macaulay cogeneric monomial ideal of codimen-
sion > 2. The type of S/M is at least the number of irreducible components of M.

Recall that S/M is Gorenstein if its Cohen-Macaulay type equals 1. This implies:

Corollary 4.12. Let M be a cogeneric monomial ideal. Then S/M is Gorenstein if
and only if M s either a principal ideal or an irreducible ideal.

Remark 4.13. In the generic monomial ideal case, we have the opposite inequality to
the one in Theorem 4.11. More precisely, if M is Cohen-Macaulay and generic then

Cohen-Macaulay type of S/M =  #{facets of the Scarf complex Ay}
< #{facets of Ay-} = #{irreducible components of M},
because the map Ay« — Ay, 0= onN{l,... ;r} is surjective on facets. Also here,

S/M is Gorenstein if and only if it is complete intersection {21, Corollary 2.11].

We present two proofs of Theorem 4.11. The first is algebraic and uses Alexander
duality, in particular the following result. For notation, define b - FF € N, for
F C{1,...,n} and b € N, to have s coordinate b, if s € F and 0 otherwise.
Also, set f3;p(M) = dim(Tor} (M, k))p, the i*" Betti number of M in Z"-degree b.

Theorem 4.14 (E. Miller [11, Theorem 4.13]). Let M C S be any monomial ideal
and let F C{Ll,... ,n}. If supp(b) = F and b; < ay for all s, then

,sza Z/B#lec )

ceNn
c-F=b

Proof of Theorem 4.11. Let Irr(S/M) denote the set of vectors b € N” for which mP
is an irreducible component of M. For any ¢ € N", we define

= #{FC{l,...,n}|c-Felir(S/M)}.
Set d = codim(M). The first aim is to show that

(8) . #Ir(S/M) < ) e Bi1,0 (M),

ceNn
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In fact, this inequality holds even if M is not cogeneric: by the construction of M2,

#Ir(S/M) = > Bope(M?) = Y By (M)
belr(S/M) o beN
Since S/M is Cohen-Macaulay of codimension d, each b € Irr(S/M) has precisely d
non-zero coordinates, and §; (M) = 0 for i > d. Thus Theorem 4.14 specializes to

Bo,pa (M?) 2{: Ba-1,c(

cF=b

for fixed b = (by,... ,b,) and F = supp(b) Summing over all b proves (8).

The Cohen- Macaulay type of S/M is EceNn Ba-1,6(M), so it suffices to prove that if
Bi-1,c (M) # 0 then v, < 1. Suppose the opposite, that is, 7. > 2 and By_1 (M) #
0. Then there are sets F, F' C {1 .,n} such that ¢-F,c-F’ € Irr(S/M) are distinct.
Let M; = m®F and M; = me¥" be the irreducible components M corresponding to
c-Fand ¢ F’. Since the algebraic co-Scarf complex of M is the minimal free resolution
of M and By4-1,c(M) # 0, there is an interior face o of the co-Scarf complex A3,
with a, = D — ¢. Since m; = x©F? and m; = = x(©F)? divide m, by construction,
o contains both : and j. In partlcular {t,7} is an edge of A%,;. Now S/M is (“ohen—
Macaulay of codimension > 2, so supp(m;) N supp(m;) # 0 by Theorem 4.8. But
deg, m; = deg, m; = D — ¢, > 0 for any s € supp(m;) N supp(m;), contradicting
the genericity of M?. a | O

After we had gotten the above proof, we conjectured the following more general
result about arbitrary triangulations of a simplex. Margaret Bayer proved our conjec-
ture for quasigeometric triangulations, using local h-vectors [16]. Since the co-Scarf
complex is a quasigeometric triangulation, Theorem 4.15 provides a second proof of
Theorem 4.11.

Theorem 4.15 (M. Bayer, personal communication). Let py, p,, ..., p, be points
which lie in the relative interior of (c — 1)-faces of a (n — 1)-simplez A. Let T be
a quasigeometric triangulation of A having the p; among ils vertices and having no
interior (n — ¢ — 1)-face. Then the number of interior (n — c)-faces is at least r.

Proof According to the hypothesis, we have 3~ pea fo(int(I'z)) > r, and fi(int(F)) =
: : #F=c

0 for all =1 <¢ < n —c¢—1. By the decomposition of the h-polynomial of T into
local h-polynomials and the positivity of local h-vectors [16, Theorem 4.6], we have

hes r) = > lea(Tr) = Y Ly (Tr).

FeA FeA
#F=c

On the other hand, we have seen that ¢;(I'r) = fo(int(T'r)) in the pfoof of Theo-
rem 2.8. Since a local h-vector is symmetric [16, Theorem 3.3], we have £._;(T'g) =

fl(FF) = fo(lnt(FF)) SO
hea(D) > Y £(Tr) = Z fo(int( Fp))>r

FeA FeA
#F=c #F=c
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Since the h-vector of int(I') is the reverse of the h-vector of I' (see the comment
preceding [17, Theorem 10.5]), we have

hoot(T) = hnpr—e(int(T))

n—c+1

= Z (_1)n+1—c—i (:’_— 1Z> (fl_l(mt(f‘)))
1=0
= fu_c(int(I)).
Thus, the number of interior (n — c)-faces of I' is at least r. O

Our final results demonstrate the effective translation between generic and co-
generic monomial ideals via Alexander duality.

Theorem 4.16. Let M be a cogeneric monomial ideal with r irreducible components,
each having the same codimension c. Then M has at least (¢ — 1) - r + 1 minimal
generators. If M has ezactly (c—1)-r+1 generators then S/M is Cohen-Macaulay.

Proof. The former statement is Alexander dual to Theorem 2.8. To prove the latter
statement, we recall the proof of Theorem 2.8. Assume that S/M is not Cohen-
Macaulay. Then I' := A3, has an edge {i,7} whose excess e satisfies e > ¢, by
Theorem 4.8. Let W € A be the support of my; ;3. Then #W = e + 2. By [16,
Proposition 2.2},

lw(Tw, z) = £(Tw)a® + £3(Tw)z® + - -+,

where £;(I'w) is the number of edges of I' whose supports are W. So we have
faci(D)y=h(T,1) > (c=1)-r+1+£4(I'w) > (c—1) -7+ 1 by an argument similar
to the proof of Theorem 2.8. Since f,_;(I') is equal to the number of generators of
M, the proof is done. O

Let M = (.., M; be a cogeneric monomial ideal without codimension 1 com-
ponent, and I' := A%, its co-Scarf complex. Since I' is shellable, the Stanley-
Reisner ring k[I] is always Cohen-Macaulay. Let (ho,h1,...,h,) be the A-vector
of I'. Since T' is Cohen-Macaulay, h; > 0 for all ;. Moreover we have hg =1, hy =,
proj-dimg M = min{i > 0 | h; = 0}, and the number of minimal generators of M is
equal to f,—1(T) = Y o, hi. In particular, when M has pure codimension ¢, then M
is Cohen-Macaulay if and only if h, = h.y; = -+ - = h,, = 0. In this case, k['] is a level
ring (see [4] for the definition), and the Cohen-Macaulay types of both S/M and k(T]
are equal to h._;. Note that k[I'] can be level, even if M is not Cohen-Macaulay. The
essential part of the proof of Theorem 2.8 is to show h; > hy for all 1 <1 < c¢—1,
when M has pure codimension c¢. We can understand Theorem 4.16 more clearly
from this point of view.

Example 4.17. (a) The ideal M = (,_, (2,24, -+ ,2'_;,z._14;) is cogeneric and
has (¢ — 1) - r + 1 minimal generators. Thus the inequality in Theorem 4.16 is tight.

(b) The converse of the latter statement of Theorem 4.16 is false. For instance,
M = {a*,b,c) N (a® b*,d) N (a,b e) N (a® b* €*) C kla,... €] is a Cohen-Macaulay
cogeneric monomial ideal with 4 irreducible components, but M needs 12 generators.
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We also note that the Cohen-Macaulay type of S/M is 7, this is larger than the
number of irreducible components. :

But in the codimension 2 case, we can prove the converse of Theorem 4.16.

Proposition 4.18. Let M be a cogeneric monomial ideal with r irreducible compo-
nents, all of codimension 2. Then S/M is Cohen-Macaulay if and only if M has
exactly r + 1 generators.

Proof. Let (hg,--- ,h ) be the h-vector of A%,. We always have hy = 1, h; = r and
h; > 0 for all 0 < ¢ < n. By the remark before Example 4.17, M needs S ohi
generators and M is Cohen-Macaulay if and only if hy = hz = --- = 0. O
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