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Effective base point freeness on normal surfaces

2FLARIEGBEFLH v & %5\ ( Takeshi Kawachi )

1. INTRODUCTION
Let M be a divisor on a normal variety Y. Our main aim is to get criteria which
provide the base point freeness of the adjoint linear system |Ky +[M] | where [M] is the
round-up of M. For smooth manifolds, there are many good results in higher dimension.
On the other hand, since singularity has much information, we would conclude the same
result by a weaker condition. It is true in the two dimensional case, we introduce that

worse singularity causes better base point freeness.

2. THE INVARIANT
Let Y be a projective normal two dimensional variety over C (we will call “normal
surface” for short), and y be a fixed point on Y. Let f: X — Y be the blowing up at y
if y is a smooth point, or the minimal resolution of y if y is singular.
Definition 1. (MRLT) Let Y, y and f be as above. Let B be an effective Q-divisor
on Y. (Y, B) is called minimal resolutional log terminal (MRLT) at y if the following

conditions are satisfied:
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(1) the round-down |B| =0,
(2) if we write Kx + f~!B = f*(Ky + B) — Agp and Ag =) ¢;F; then all e; < 1,
where f~1B means the strict transformation of B by f. O
Definition 2. Let Z be the fundamental cycle of y. We define 65, = —(Z—Ap)2. O
- We set A = Ay, 'which is the case of B = 0; and also §; = Qg y. Since B is effective,
we have Ap > A and then 0 < dp 4y < d, (cf. [F]). We have the following bound of §,.

Proposition 1. [KM, Theorem 1]

(1) 6y =4 if y is a smooth point, and 6, = 2 if y is a rational double point.
(2) 0<éy <2 ifY is Kawamata log terminal at y.

Note that if (Y, B) is MSLT at y then Y is Kawamata log terminal at y. Hence dp 4
is also bounded if (Y, B) is MRLT. Now we will take the above invarianf a little bit
smaller.

Definition 3.
Omin = min{—(Z — A + z)? | z is an effective f-exceptional divisor.}
Omin, (Y,B)is an MRLT at y
.
0, otherwise
(1 — max{e1,e,}, y is of type A,,

8’ = { any positive number, y is of type D,,

L 0, otherwise. [

Note that if y is of type A,, the indices are taken in the standard way.

O—0-0O—---—0-0

E, E, E5 ~  E 4 E

n
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3. THE MAIN RESULT

Theorem 2. Let M be a nef and big Q- Weil divisor onY, and B = [M]— M. Assume
that Ky + [M] is Cartier. If M2 > § and M - C > §' for any curve C on'Y passing
through y, then y is not a base point of |Ky + [M]|.

Note that if y is of type D,, then the assumption M - C > §' is equivalent to assume
M - C > 0 by the definition of §’.

Proof. If y is not an MRLT, the proof is well known. (cf. [KM, (2.1)]). So we assume
that y is an MRLT point.

Since the assertion is local, we may assume Y — {y} is smooth.

First we take a good effective Q-divisor D such that Q-linearly equivalent to M.

" Lemma 3. There ezists an effective Q-divisor D on'Y such that D = M (numerically
equivalent) and f*D > Z — Ap + x where x attains the minimum Spmin.-
Proof. Since M? > iy, we have (f*M — (Z — Ap+x))? >0and f*M - (f*M — (Z —
Ap + z)) > 0. Hence f*M — (Z — Ap + z) is big, we can get an effective Q-divisor
Q-linearly equivalent to f*M — (Z — Agp +z). O

Let D be an Q-divisor satisfying the above lemma. We set D = %" d;C;, B =>_ b;C;,
D; = f71C;, f*D =5"d;D; + 5 d;-Ej, f*B=>b;D;+> b;-Ej. We f:hoose the rational

number ¢ as the following.

d; ’ d

J

c:min{l—bi 1-¢ }di>0,Diﬂf_1(y)#@andf(Ej)z{y}}.

Since (Y, B) is MRLT and the choice of D, we have 0 < ¢ < 1.
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Let R= f*M —cf*D. Since 0 < ¢ < 1 and D = M is nef and big, R is also nef and

big. By a simple calculation, we have
[R] = f*(Ky +[M]) - Kx — |cf*D+ f*B+ A| = R+ {cf*D + f*B + A},
where {-} means the fractional part. Hence we have
Kx +[R] = f*(Ky + M) = |cdi + b;] D; + > ed; +e;] E;.

We write ) |cd; + b;| D; = A+ N where all components of A meet with f~(y) and N
is disjoint from f~'(y). Let E = }_ |cd} + ¢;| E;. By the choice of ¢, both A and E are
reduced or only one of them is zero. Let A =D +---+ D;.
Lemma 4. If A #0 then (Y, f.A) is log canonical at y and the dual graph is one of the

followings.

(1) @O-O—---—0-0

2 ‘“Q—Q—“———g—g)
2 )

(5 @O-O--- OO0 @

In the above lemma, we denote prime components of F and f,.A by O and @
respectively. Note that only the case (1) is log terminal.
Proof. Because of f*(Ky + f«A) — Kx — A< E, (Y, f.A) is log canonical at . These
are classified as in [A] and [K], they are only above 3 cases. [

We divide the proof of the main theorem in two cases according to E.
Case 1: E #0.

If t > 0 then y is of type A, or D,. Note that if y is of type E, then A must be 0.
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Since R is nef and big, each D; is integral in R and R- D; 2 8" > 0, we have the following
vanishing due to Kawamata-Viehweg.
HY(X,Kx + [R]+ A) = HY(X, f*(Ky + [M]) - N —E) =0.
Hence the morphism
HO(X, f*(Ky + [M]) = N) — H°(E, (f*(Ky + [M]) = N)|g)

is surjective.
Case 2: £ =0.

In this case, (Y, f«A) is log terminal of type A, at y and ¢t = 1. So we let A = D;.
Hence the morphism

H(X, f*(Ky + [M]) = N) — H°(Dy, (f*(Ky + [M]) - N)|p,)

is surjective. Since (f*(Ky + [M])— N)|p, = Kp, + [R] |p,, if [R]- D1 > 1 then there
exists a section in H°(Dy, Kp, + [R] |p,) which does not vanish at Dy N f~*(y) by [H].
Hence it is enough to show [R] - D; > 1.

Note that [R]- Dy > R- D1+ ) (cdj + €;)E; - D1 and y € Supp f«D1, we have
R-D; > (1 —c)é'. By changing the indices we may assume e; < e,. Hence §' =1 — e,.

If D; meets E,, then the inequalities f*D > Z — Ap and

[R] D1 >(1—c)(1—en)+ed, +e,=1+c(d, +en,—1)

imply [R]- D1 > 1.

So we assume that D; meets Ej.

Let A = A(ws,...,w,) = (—E; - E;);; be the intersection matrix of the exceptional

divisors of type A,. Let a(ws,...,wy) = det A(wi,...,wy,) be the determinant. We set
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a() = 1 for convenience. Let L; be an irreducible curve on Y such that f~'L; - E; = 1
and f~1L;- E; =0 for all j #i. Weset f*L; = f~'L; + 3 ci; E;.
By simple calculation of matrices, we have the following proposition.

Proposition 5. Let A =} a;E;.

1 _a(wy,...,wi—1) + a(Wit1, ..., Wn)

—Qa; = ’
a(wyy ..., Wy)

_ a(wl, ‘o ,wi_l)a(ij, oo ,wn)

Cij = yifi <4, cij = cjie

a(wy, ..., Wn)
Let f*C1 = D1+ c;E;. Let yp,; = d; — dic;, the coefficients of E; arising from
D;’s except D;. We also let yp ; = b;. —bicj and y; = cyp ; +yB,;. Since the miniﬁality
of ¢, §ve have cd; + by = 1. Hence we have cd] + b] = ¢1 + y1. Therefore we have
[R]-D1>(1—-¢c)§ +cdi+ei=(1—-c)(l—en)+a1+c1+y1.
By Proposition 5, we have a; + ¢; = 1/a, where a = det A(w,...,ws). Sincé‘ E =0,

we also have y; < 1/a.

Claim 6.

a(wl, N ,’l.Un_l)
(67

(1—c)(1—epn)> and yn < a(wi,..., Wn-1)Y1.
By this claim, we have [R] - D1 > 1 + (a(wi,...,wp—1) — 1)(1/a — y1). Since
a(w,...,wnh—1) > 1 and y1 < 1/a, we have [R] - Dy > 1.

Proof of Claim 6. By the choice of D, we have d), > 1 — a,, — b),. Hence

di +b1 —1
d —1+ap,+0b _° _so= ¢ ,
(d, tant ”)1——an 1+ a(wy,...,Wn—1)
since cd; +b; = 1. We set o/ = a(ws,...,wp—1) for convenience. Then we have
1 dy b —1
d —1 b . .
(@-1+am s )T~ 1) o> T

Since (1 — an)a =1+ o and d, = di/a + yp n, the left-hand-side equals to
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d b d oy
n_ 4 1 c= [ 22n +—2—=1]ec
1—-a, l—-a, 1+ l—-a, 1-—a,

On the other hand, the right-hand-side equals to

bi—1_ bitoysn lt+oypn b, _1+a’—ay3,n
l1+o  1+4+o 1+ o 1-a, 1+ o

Thus we have

b, al/a_an—cyDn
1__ 1_ n E] b .
( C)( l-an>> 1-ag,

The second assertion follows from Proposition 5 and the inequalities ¢;; > ¢12 > -+ >

Cip and cp; < Cpop < -+ < cpp. O

[Al

[F]

(H]

REFERENCES
V. Alexeev, Classification of log-canonical surface singularities, Flips and abundance for alge-
braic threefolds, Astérisque 211 (1992), 47-58.
T. Fujita, An appendiz to Kawachi-Magek’s paper on global generation of adjoint bundles on
normal surfaces, J. Alg. Geom. 7 (1998), 251-252.
R. Hartshone, Generalized divisor on Gorenstein curves and a theorem of Noether, J. Math.
Kyoto Univ. 26 (1986), 375-386.
Y. Kawamata, Crepant blowing-up of 3-dimensional canonical singularities and its applications

to degeneration of surfaces, Ann. Math. 127 (1988), 93-163.

[KM] T. Kawachi and V. Magek, Reider-type theorems on normal surfaces, J. Alg. Geom. 7 (1998),

239-249.



