Effective base point freeness on normal surfaces

東工大理工学研究科 川内 毅 (Takeshi Kawachi)

1. Introduction

Let M be a divisor on a normal variety Y. Our main aim is to get criteria which provide the base point freeness of the adjoint linear system $|K_Y + \lceil M \rceil|$ where $\lceil M \rceil$ is the round-up of M. For smooth manifolds, there are many good results in higher dimension. On the other hand, since singularity has much information, we would conclude the same result by a weaker condition. It is true in the two dimensional case, we introduce that worse singularity causes better base point freeness.

2. The invariant

Let Y be a projective normal two dimensional variety over \mathbb{C} (we will call "normal surface" for short), and y be a fixed point on Y. Let $f: X \to Y$ be the blowing up at y if y is a smooth point, or the minimal resolution of y if y is singular.

Definition 1. (MRLT) Let Y, y and f be as above. Let B be an effective \mathbb{Q} -divisor on Y. (Y, B) is called *minimal resolutional log terminal* (MRLT) at y if the following conditions are satisfied:

- (1) the round-down $\lfloor B \rfloor = 0$,
- (2) if we write $K_X + f^{-1}B = f^*(K_Y + B) \Delta_B$ and $\Delta_B = \sum e_i E_i$ then all $e_i < 1$, where $f^{-1}B$ means the strict transformation of B by f. \square

Definition 2. Let Z be the fundamental cycle of y. We define $\delta_{B,y} = -(Z - \Delta_B)^2$. \square

We set $\Delta = \Delta_0$, which is the case of B = 0; and also $\delta_y = \Delta_{0,y}$. Since B is effective, we have $\Delta_B > \Delta$ and then $0 \le \delta_{B,y} \le \delta_y$ (cf. [F]). We have the following bound of δ_y .

- Proposition 1. [KM, Theorem 1]
 - (1) $\delta_y = 4$ if y is a smooth point, and $\delta_y = 2$ if y is a rational double point.
 - (2) $0 < \delta_y < 2$ if Y is Kawamata log terminal at y.

Note that if (Y, B) is MSLT at y then Y is Kawamata log terminal at y. Hence $\delta_{B,y}$ is also bounded if (Y, B) is MRLT. Now we will take the above invariant a little bit smaller.

Definition 3.

 $\delta_{\min} = \min\{-(Z - \Delta_B + x)^2 \mid x \text{ is an effective } f\text{-exceptional divisor.}\}$

$$\delta = \left\{ \begin{array}{ll} \delta_{\min}, & (Y,B) \text{ is an MRLT at } y \\ \\ 0, & \text{otherwise} \end{array} \right.$$

$$\delta' = \left\{ egin{array}{ll} 1 - \max\{e_1, e_n\}, & y ext{ is of type } A_n, \\ & & \\ \text{any positive number}, & y ext{ is of type } D_n, \\ & & \\ 0, & & \text{otherwise.} \end{array} \right. \ \square$$

Note that if y is of type A_n , the indices are taken in the standard way.

3. The main result

Theorem 2. Let M be a nef and big \mathbb{Q} -Weil divisor on Y, and $B = \lceil M \rceil - M$. Assume that $K_Y + \lceil M \rceil$ is Cartier. If $M^2 > \delta$ and $M \cdot C \geq \delta'$ for any curve C on Y passing through y, then y is not a base point of $|K_Y + \lceil M \rceil|$.

Note that if y is of type D_n then the assumption $M \cdot C \ge \delta'$ is equivalent to assume $M \cdot C > 0$ by the definition of δ' .

Proof. If y is not an MRLT, the proof is well known. (cf. [KM, (2.1)]). So we assume that y is an MRLT point.

Since the assertion is local, we may assume $Y-\{y\}$ is smooth.

First we take a good effective \mathbb{Q} -divisor D such that \mathbb{Q} -linearly equivalent to M.

Lemma 3. There exists an effective \mathbb{Q} -divisor D on Y such that $D \equiv M$ (numerically equivalent) and $f^*D > Z - \Delta_B + x$ where x attains the minimum δ_{\min} .

Proof. Since $M^2 > \delta_{\min}$, we have $(f^*M - (Z - \Delta_B + x))^2 > 0$ and $f^*M \cdot (f^*M - (Z - \Delta_B + x)) > 0$. Hence $f^*M - (Z - \Delta_B + x)$ is big, we can get an effective \mathbb{Q} -divisor \mathbb{Q} -linearly equivalent to $f^*M - (Z - \Delta_B + x)$. \square

Let D be an \mathbb{Q} -divisor satisfying the above lemma. We set $D = \sum d_i C_i$, $B = \sum b_i C_i$, $D_i = f^{-1}C_i$, $f^*D = \sum d_i D_i + \sum d'_j E_j$, $f^*B = \sum b_i D_i + \sum b'_j E_j$. We choose the rational number c as the following.

$$c = \min \left\{ \frac{1 - b_i}{d_i}, \frac{1 - e_j}{d'_j} \mid d_i > 0, D_i \cap f^{-1}(y) \neq \emptyset \text{ and } f(E_j) = \{y\} \right\}.$$

Since (Y, B) is MRLT and the choice of D, we have 0 < c < 1.

Let $R = f^*M - cf^*D$. Since 0 < c < 1 and $D \equiv M$ is nef and big, R is also nef and big. By a simple calculation, we have

$$[R] = f^*(K_Y + [M]) - K_X - [cf^*D + f^*B + \Delta] = R + \{cf^*D + f^*B + \Delta\},$$

where $\{\cdot\}$ means the fractional part. Hence we have

$$K_X + \lceil R \rceil = f^*(K_Y + M) - \sum \lfloor cd_i + b_i \rfloor D_i + \sum \lfloor cd'_j + e_j \rfloor E_j.$$

We write $\sum \lfloor cd_i + b_i \rfloor D_i = A + N$ where all components of A meet with $f^{-1}(y)$ and N is disjoint from $f^{-1}(y)$. Let $E = \sum \lfloor cd'_j + e_j \rfloor E_j$. By the choice of c, both A and E are reduced or only one of them is zero. Let $A = D_1 + \cdots + D_t$.

Lemma 4. If $A \neq 0$ then (Y, f_*A) is log canonical at y and the dual graph is one of the followings.

In the above lemma, we denote prime components of E and f_*A by \bigcirc and \blacksquare respectively. Note that only the case (1) is log terminal.

Proof. Because of $f^*(K_Y + f_*A) - K_X - A \leq E$, (Y, f_*A) is log canonical at y. These are classified as in [A] and [K], they are only above 3 cases. \square

We divide the proof of the main theorem in two cases according to E.

Case 1: $E \neq 0$.

If t > 0 then y is of type A_n or D_n . Note that if y is of type E_n then A must be 0.

Since R is nef and big, each D_i is integral in R and $R \cdot D_i \ge \delta' > 0$, we have the following vanishing due to Kawamata-Viehweg.

$$H^{1}(X, K_{X} + \lceil R \rceil + A) = H^{1}(X, f^{*}(K_{Y} + \lceil M \rceil) - N - E) = 0.$$

Hence the morphism

$$H^{0}(X, f^{*}(K_{Y} + \lceil M \rceil) - N) \to H^{0}(E, (f^{*}(K_{Y} + \lceil M \rceil) - N)|_{E})$$

is surjective.

Case 2: E = 0.

In this case, (Y, f_*A) is log terminal of type A_n at y and t = 1. So we let $A = D_1$. Hence the morphism

$$H^0(X, f^*(K_Y + \lceil M \rceil) - N) \to H^0(D_1, (f^*(K_Y + \lceil M \rceil) - N)|_{D_1})$$

is surjective. Since $(f^*(K_Y + \lceil M \rceil) - N)|_{D_1} = K_{D_1} + \lceil R \rceil|_{D_1}$, if $\lceil R \rceil \cdot D_1 > 1$ then there exists a section in $H^0(D_1, K_{D_1} + \lceil R \rceil|_{D_1})$ which does not vanish at $D_1 \cap f^{-1}(y)$ by [H]. Hence it is enough to show $\lceil R \rceil \cdot D_1 > 1$.

Note that $\lceil R \rceil \cdot D_1 \geq R \cdot D_1 + \sum (cd'_j + e_j)E_j \cdot D_1$ and $y \in \operatorname{Supp} f_*D_1$, we have $R \cdot D_1 \geq (1-c)\delta'$. By changing the indices we may assume $e_1 \leq e_n$. Hence $\delta' = 1 - e_n$. If D_1 meets E_n then the inequalities $f^*D > Z - \Delta_B$ and

$$\lceil R \rceil \cdot D_1 \ge (1 - c)(1 - e_n) + cd'_n + e_n = 1 + c(d'_n + e_n - 1)$$

imply $\lceil R \rceil \cdot D_1 > 1$.

So we assume that D_1 meets E_1 .

Let $A = A(w_1, ..., w_n) = (-E_i \cdot E_j)_{ij}$ be the intersection matrix of the exceptional divisors of type A_n . Let $a(w_1, ..., w_n) = \det A(w_1, ..., w_n)$ be the determinant. We set

a()=1 for convenience. Let L_i be an irreducible curve on Y such that $f^{-1}L_i \cdot E_i = 1$ and $f^{-1}L_i \cdot E_j = 0$ for all $j \neq i$. We set $f^*L_i = f^{-1}L_i + \sum c_{ij}E_j$.

By simple calculation of matrices, we have the following proposition.

Proposition 5. Let $\Delta = \sum a_j E_j$.

$$1 - a_i = \frac{a(w_1, \dots, w_{i-1}) + a(w_{i+1}, \dots, w_n)}{a(w_1, \dots, w_n)},$$

$$c_{ij} = \frac{a(w_1, \dots, w_{i-1})a(w_{j+1}, \dots, w_n)}{a(w_1, \dots, w_n)}, \text{ if } i \leq j, \quad c_{ij} = c_{ji}.$$

Let $f^*C_1 = D_1 + \sum c_j E_j$. Let $y_{D,j} = d'_j - d_1 c_j$, the coefficients of E_j arising from D_i 's except D_1 . We also let $y_{B,j} = b'_j - b_1 c_j$ and $y_j = c y_{D,j} + y_{B,j}$. Since the minimality of c, we have $c d_1 + b_1 = 1$. Hence we have $c d'_1 + b'_1 = c_1 + y_1$. Therefore we have

$$[R] \cdot D_1 > (1-c)\delta' + cd'_1 + e_1 = (1-c)(1-e_n) + a_1 + c_1 + y_1.$$

By Proposition 5, we have $a_1 + c_1 = 1/\alpha$, where $\alpha = \det A(w_1, \dots, w_n)$. Since E = 0, we also have $y_1 \leq 1/\alpha$.

Claim 6.

$$(1-c)(1-e_n) > \frac{a(w_1,\ldots,w_{n-1})}{\alpha}$$
 and $y_n \le a(w_1,\ldots,w_{n-1})y_1$.

By this claim, we have $\lceil R \rceil \cdot D_1 > 1 + (a(w_1, \dots, w_{n-1}) - 1)(1/\alpha - y_1)$. Since $a(w_1, \dots, w_{n-1}) \ge 1$ and $y_1 < 1/\alpha$, we have $\lceil R \rceil \cdot D_1 > 1$.

Proof of Claim 6. By the choice of D, we have $d'_n > 1 - a_n - b'_n$. Hence

$$(d'_n - 1 + a_n + b'_n) \frac{c}{1 - a_n} > 0 = \frac{cd_1 + b_1 - 1}{1 + a(w_1, \dots, w_{n-1})},$$

since $cd_1 + b_1 = 1$. We set $\alpha' = a(w_1, \dots, w_{n-1})$ for convenience. Then we have

$$\left((d'_n - 1 + a_n + b'_n) \frac{1}{1 - a_n} - \frac{d_1}{1 + \alpha'} \right) c > \frac{b_1 - 1}{1 + \alpha'}.$$

Since $(1 - a_n)\alpha = 1 + \alpha'$ and $d'_n = d_1/\alpha + y_{D,n}$, the left-hand-side equals to

$$\left(\frac{d'_n}{1-a_n}-1+\frac{b'_n}{1-a_n}-\frac{d_1}{1+\alpha'}\right)c=\left(\frac{y_{D,n}}{1-a_n}+\frac{b'_n}{1-a_n}-1\right)c.$$

On the other hand, the right-hand-side equals to

$$\frac{b_1 - 1}{1 + \alpha'} = \frac{b_1 + \alpha y_{B,n}}{1 + \alpha'} - \frac{1 + \alpha y_{B,n}}{1 + \alpha'} = \frac{b'_n}{1 - a_n} - 1 + \frac{\alpha' - \alpha y_{B,n}}{1 + \alpha'}.$$

Thus we have

$$(1-c)\left(1-\frac{b'_n}{1-a_n}\right) > \frac{\alpha'/\alpha - y_{B,n} - cy_{D,n}}{1-a_n}.$$

The second assertion follows from Proposition 5 and the inequalities $c_{11} > c_{12} > \cdots >$ c_{1n} and $c_{n1} < c_{n2} < \cdots < c_{nn}$. \square

REFERENCES

- [A] V. Alexeev, Classification of log-canonical surface singularities, Flips and abundance for algebraic threefolds, Astérisque 211 (1992), 47–58.
- [F] T. Fujita, An appendix to Kawachi-Maşek's paper on global generation of adjoint bundles on normal surfaces, J. Alg. Geom. 7 (1998), 251-252.
- [H] R. Hartshone, Generalized divisor on Gorenstein curves and a theorem of Noether, J. Math.
 Kyoto Univ. 26 (1986), 375–386.
- [K] Y. Kawamata, Crepant blowing-up of 3-dimensional canonical singularities and its applications to degeneration of surfaces, Ann. Math. 127 (1988), 93-163.
- [KM] T. Kawachi and V. Maşek, Reider-type theorems on normal surfaces, J. Alg. Geom. 7 (1998), 239–249.