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Abstract

A set optimization problem with a set-valued objective function is investigated,
and duality result is considered.

1 Introduction

Set-valued optimization has been investigated for about twenty years by many authors and
various results concerned with the problem were obtained, see [1, 2, 3, 4, 6, 8, 9] and so on.
Usually, this optimization is interpreted as a vector optimization problem with a set-valued
objective function as follows:
(VP) Minimize  F(z)
subject to €S

where S is a nonempty set, (7, <) is an ordered space, F' is a set-valued map from S to
Z, that is, F : S — 2%. The aim of vector optimization problem (VP) is to find z, € S,
called solution, satisfying F'(zo) includes a Pareto extremal point of U,es F'(z), that is,
there exists zg € F(xg) such that if z € U,cq F(x) and 2 < 2y then zy = 2.

However, the aim of (VP) is not suitable for ‘set-valued optimization’ because such
solutions are decided by one of the extremal elements of solution’s value. Recently, a set
optimization problem with a set-valued objective function was introduced against vector
optimization problem (VP), see [5]. Criteria of solutions of the optimization problem are
obtained by comparisons of set-values of the objective function, these are called natural
criteria. Our aim of this paper is to establish duality theory of such a set optimization
problem with a set-valued objective function.
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The construction of this paper is the following: In Section 2, we mention some notations
and definitions concerned with such a set optimization problem. In Section 3, we show an
embedding theorem, and also we prove a strong duality theorem. In Section 4, we prove a
saddle point theorem for our set optimization problem.

2 Set Optimization of Set-Valued Maps

Let X be anonempty set, Y and Z topological vector spaces, K and L solid, pointed, convex
cones of Y, Z, respectively, F' and G set-valued maps from X to Y and Z, respectively,
that is F': X — 2%, G : X — 2Y, and assume that F(z) # 0 and G(z) # 0 for each z € S,
and S :={z € X | G(z) N (—K) # 0}. Now we define problem (SP) as follows:
(SP) Minimize  F(x) |
subject to 1z € 5.

Before to define notions of solutions of problem (SP), we mention about some set rela-
tions in ordered vector space (Z,<;). For Q0 £ A, B C Z,

A<\ B & A+ Lo B,

A<UB & AcB-1L.

In these notations, ! means lower and u means upper: A <} B iff each element b of B has
a lower bound in A, and A <} B iff each element a of A has an upper bound in B. We
treat only relation <} in this paper.

The aim of problem (SP) is to find the following solutions:

Definition 2.1 A vector zy € X is said to be

(i) a feasible solution of (SP)if z € S

(ii) a minimal solution of (SP) if zg € S, and if z € S and F(z) <} F(z,) are satisfied,
then F(zy) <} F(z) is fulfilled.

If F(x) is a singleton, that is F(z) is written by F(z) = {f(z)} for some map f from
X to Z, these notions are equivalent to usual ones of ‘set-valued optimization.’

3 Embedding Theorem and Duality Theorem

In the rest of paper, we assume that all values of set-valued map F are nonempty compact
convex. We denote C(Z) as the family of all nonempty compact convex sets in Z.

First, we construct an ordered normed linear space V in which C(Z) is embedded. On _
C(Z)* we define an equivalent relation ~: for (A, B), (C, D) € C(Z)?,

(A,B)~ (C,D) €% A4+D+L=B+C+L.
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Let [(A4, B)] be the equivalence class includes (4, B), and let V be C(Z)?/~, the sets of
all equivalence classes [(A, B)]. We define a vector structure on V as follows: for [(4, B)],
[(C, D)] € V, sum and scalar product are defined by:

[(4,B)] +[(C, D)] :==[(A+C, B+ D)]

[ [(AA B, A 270
A4, B)) = { %(—)\B, —}\A)], A<0

Then we can show that V is a vector space over the realfield. Moreover, we define a norm
| -1]. For [(4,B)] € V,

(A, B)l| := inf{A > 0 | A+ AU <}, B, B+ U <, A}

then, (V, || - ||) is a normed space. Let I1 := {[(4,B)] € V | B <}, A}, then I is a solid,
pointed, convex cone in V, and we can derive a partial order < in V:

[(4,B)] <n [(C,D)] &5 [(C,D)] - [(4,B)] €Tl

Finally, V is an ordered normed space over the realfield.
Now we show the following embedding theorem:

Theorem 3.1 Let ¢ :C(Z) =V by
p(A) = [(4,{0})], AeC(Z)
then, the following are satisfied:

(i) For each A,B € C(Z),
A<y B = ¢(4) <n @(B);

(i) conditions a) and b) are equivalent:

a) zo € S is a solution of set optimization (SP),
b) z¢ € S is a solution of the following vector optimization (EP):

(EP) Minimize @(F(z))
subject to z € S.

From this result, we can use results of vector optimization with set-valued maps to solve
set optimization with set-valued maps.

Theorem 3.2 Let the following assumptions are satisfied:

(A1) F is nonempty compact convex values
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(A2) Vx1, 75 € X, Vyy € G(11), 32 € G(x2), YA € (0,1), I(7,y) € Gr(G) such that
F(z) < (1= M) F(z1) + A\F(22)
Y <k (1 =Xy + Ayz

(A3) 3z’ € X such that G(z') N (—intK) # 0
(A4) xz, is a proper solution of set optimization of (SP)

then there exist y5 € K+ \ {0} and g : intL — (0,00) such that

(i) 1/p is affine on intL

(1) for each a € intl, (T,, ¢(F(xy))) is a weak maximizer of the weak dual
problem of (EP),

where T,(y) = (y¢, yyu(a)a, y € Y.

Corollary 3.1 Under same assumption of the last theorem, there exist y¢ € K\ {4} and
p intL — (0,00) with 1/u is affine on intL such that

for any a € intL, there does not exist (z,y) € Gr(G) such that
F(z) + Tu(y) <tur F(zo)

where T,(y) = (y§, y)u(a)a, y € Y.

4 Saddle Point Theorem
In this section, we consider a saddle point theorem of (SP). First, for primal problem (SP),
we define dual problem (SD):

(SD) Maximize  ®(7T)
subject to T € M

where
o &(T) = Min(p(L(X,T))|IT)
o L(z,T)=F(z)+ T(G(x))
e M={T e L(Y,Z),|T=(y*,Ya,y* € K"\ {0},a € intL}
Definition 4.1 (Saddle Point) (z9,75) € X x M is said to be a saddle point of L if
p(L(zo,T0)) N Max(p(L(zo, M))|IT) N Min(p(L(X, To))[IT) # 0.

Proposition 4.1 (zy,7;) € X X M is a saddle point of L iff there exists yo € G(z9) such
that
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(1) F(z) +To(y) < f o) + To(%o), (2, ) EGr(G)

(=
“—‘>F($0)+TQ( S ( )+T0

(y
(i) F'(zo) + To(yo) < F(fco) +T(y), T € L4(Y, Z)
= F(z0) + T(yo) <' F(zo) + To(yo)
I

)

Theorem 4.1 (Saddle Point Theorem) If (zo,'TO) is a saddle point of L, then
1) z is an optimal of (SP);
2) Tp is an optimal of (SD);
3) @(F(z0)) N ®(To) N Max(®(M)|II) # 0
4) G(m) C —K;
5) To(y) = 0 for all y € G(xzo).

Conversely, if 1) through 5) above and F(z) = Min(F(z)|K) for each x € X hold, then
(xg,Tp) is a saddle point of L.
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