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Introdliction.

In this talk, we shall study the microlocal structure of the complex power of the irreducible relative
invarinat P(z) on the prehomogeneous vector space (GLn(R) x SO, ¢(R), My m(R)). We shall give
some result on the exact order of poles with respect to the power parameter (Theorem 2.3) and the
exact support of the principal part of the pole (Theorem 2.4). By these theorems, we can construct
a suitable basis of the space of singular invariant hyperfunctions on the space M, ,(R) in some cases.
The hyperfunctions belonging to the basis are expressed by the coefficients of the Laurent expansion of
|P(z)|*, the complex power of the determinant function. We estimate the exact order of the poles of
|P(z)]* and give the exact support of the negative-order coefficients of the Laurent expansion of |P(z)[*.

1 Complex powers of the determinant function.

In this section, we shall explain our problem more precisely, prepare some notions and notations, and
state some preliminary known results.

1.1 Some fundamental definitions.

Let m,n be the positive integers with m > n. We put V := M, ,(R) be the space of n x m matrices
over the real field R, We define GL,(R) (reap. SL,(R)) to be the general (resp. special) linear group
over R. and denote by GL,(R)* the subgroup consisting of elements with positive determinant. Let p, ¢
be positive integers satisfying p 4+ ¢ = m. We define SO, 4(R) := {9 € GLn(R)* | glp,¢'9 = I ¢} where

Lg= (Ip 0 ) We suppose that p,q > n for a technical reason in this talk.

0 -1,
Then the real algebraic group G = GL,,(R)+ x SO, 4(R) operates on the vector space V by the
representation :
p(g) iz +—> g1-z g2, (1)

withz € V and g := (¢1,92) € G.

Irreducible homogeneous relatively invariant polynomials on V' are written by a constant multiple
of P(z) := det(zl,4'z). The polynomial P(z) is a relative invariant corresponding to the character
x(g) := det(g1)* with respect to the action of G jie., P(p(g) - z) = x(9)P().

Let § := {x € V | det(zlpq,'®) = 0} and call § a singular set of V. The open subset V — S
decomposes into (n + 1) open G-orbits

Vi={z € Mym(R) | sgn(zl,'z) = (n—1i,9)}. 2)

— —

withi =0,1,...,n!. Here, sgn(z) for ¢ € Sym,,(R) is the signature of the quadratic form ¢, (¥) := ‘¥ 29
on 7 € R™.
f p < n or ¢ < n, then min{n, ¢} > > max{0,n — p}.




94

1.2 Reduction to the space of symmetric matrices.

The prehomogeneous vector space V' = M, ,,(R) acting the group GL,(R) x SO, 4(R) is closely related
to the symmetric matrix space Sym,(R) acting the group GL,(R). We shall explain the relation by
using the reduction map 9. _

‘Let Viym := Sym, (IR) be the space of n x n real symmetric matrices. Then the G,yn := GL,(R)
acts on the vector space V,y;, by the representation

psym(9) 1 y—rg-y-tg, (3)

with y € V,ym and g € GL,(R). Put Q(y) := det(y). Then Q(y) is an irreducible polynomial on V sy,
and is relatively invariant corresponding to the character X,ym(g) := det(g)? with respect to the action
of g € Gyym Jie., Q(psym(9) - y) = Xsym (9)2Q(y). Let Ssym = {y € Voym | det(y) = 0} and we call
Ssym a singular set of Vyyr,. The open subset V. — S;ym decomposes into (n + 1) open Gyym-orbits
Vieym,i = {y € Sym,(R) | sgn(y) = (n —,7)}. 4)
with¢=0,1,...,n.
Consider the rational map from V = M, ,(R) to V,y,, = Sym,R
Yizr—ry=al, . (5)
Then we have the following proposition.

Proposition 1.1 (see Ochiai [Och97]). 1. The map ¥ gives one to one correspondence between the
set of the connected componets of V — S and that of Vym — Ssym.

2. Let C[V] and C[V 4] be the polynimial rings on V and V ,ym,, respectively. We denote by
C[V]89»s(®) the subring of invarinat polynomials under the action of SOy 4(R) in C[V]. Then
we can identify C[V]5C»4(®) and C[V ,y,] by the map . In particular, we have Q((z)) = P(z).

1.3 Complex powers of relative invariants

For a complex number s € C, we set

s . IQ(y)ls af y € Vsym,i;
Q(): .—{ v e Teme ©

For a complex number s € C, we can define a function |P(z)|; by

R U M, ™
on V. It is a continuous function if the real part R(s) > 0.
Let 8(V) and 8(V sym) be the space of rapidly decreasing smooth functions on V' and V ;ym respectively.
is convergent if the real part R(s) of s is sufficiently large and is meromorphically extended to the whole
complex plane. Thus we can regard |Q(y)|} as a tempered distribution with a meromorphic parameter
seC.
For ¢(z) € 8(V') or é(y) € 8(Vsym), the integrals

Zi(b,s) = /V |P(2)[{6(x)dz, (8)

and

Zi(d,s) = /V QW) 6(v)dy, )
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are convergent if the real part R(s) > —1. Thus we see that |P(z)[} and |Q(y)|{ are hyperfunctions with a
holomorphic parameter s for ®(s) > —1 and are meromorphically extended to the whole complex plane.
Consequently, we can regard |P(z)|{ and |Q(y)|; as tempered distributions with a meromorphic pa-
rameter s € C. ’
We consider a linear combination of the hyperfunctions defined by

PA(e) = 3 ai- P (10)
=0 .
and
QP(y) := Zaz Q)i ' (11)

with s € C and @ := (ao,a1,...,a,) € C**1. Then P!%*l(z) and QI%*](y) are hyperfunctions with a
meromorphic parameter s € C, and depends on @ € C"*! linearly.
1.4 Basic properties and some known results on complex powers.

The following theorem is easily proved by the general theory of b-functions. See for example [Mur90].

Theorem 1.2 (see Muro [Mur98]). 1. Ql%*1(y) is holomorphic with respect to s € C except for the
poles at s = —"—'%'—1 with k=1,2,....

2. The possibly highest order of the pole of QI%*)(y) at s = —-’“—‘5—1- is given by

&) (k=1,2....,n-1),

(5] J(k=n,n+1...., and k+ n is odd), (12)
[%J ,(k=n,n+1...., and k + n is even).

Here, |z| means the floor of x € R, i.e., the largest integer which does not exceed .

)

Theorem 1.3. 1. P[‘“](a:) is holomorphic with respect to s € C except for the poles at s = —’%‘—1
withk=1,2,.... :
2. The possibly highest order of the pole of Pl&*1(z) at s = ——5—;—1 is given by
= J(1<k<n),
15] ,(n<k<m-n&k+nisodd),
L%J 7(n<k<TR—n&k+nlseven)
<[%J+[k_—m§*iﬁj J(m—-—n<k<m&k+nisodd), (13')
|24+ [E=mdnd2 | (m—n<k<m&k+nis even),
|2] + 2] ,(m <k & m — n is even), '
2 (m <k & m—nisodd and k + n is odd),
(

m<k & m—nisodd and k + n is even).

)

Here, |z| means the floor of z € R, i.e., the largest integer which does not exceed z.

1.5 Singular invarinat hyperdunctions

We say that a hyperfunction f(z) (resp. f(y)) on V (resp. V,ym) is singular if the support of f(z)
(resp. f(y)) is contained in the set S (resp. Syym)). In addition, if f(z) (resp. f(y)) is G* =
SL,(R) x SO, ¢(R)-invariant (resp. G, := SLn(R)-invariant), we call f(z) (resp. f(y)) a singular
invariant hyperfunction on V' (resp. Vi ym).
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Any negative-order coefficient of a Laurent expansion of Pl&#](z) (resp. Q#*1(y)) is a singular invari-
ant hyperfunction since the integral

[ 1@PEA @)=Y 2i(5,0) (14)

(resp. [ £@QH )y = 3 4(7,5) )

is an entire function with respect to s € Cif f(z) € C§°(V — S) (resp. f(z) € C§°(V sym — Ssym)), where
CE(V — 8) (resp. C°(Visym — Ssym)) is the space of compactly supported C'*°-functions on V' — §
(resp. Viym — Ssym)-

Conversely, we have the following proposition.

Proposition 1.4 ([Mur88],[Mur90]). Any singular invariant hyperfunction on V (resp. Vynm) is
given as a linear combination of some negative-order coefficients of Laurent expansions ofP[a’s](J:) (resp.
Q%4)(y)) at various poles and for some G € C*1. :

1.6 Orbit decomposition of Sym, (R).

The vector space V 5y, decomposes into a finite number of G-orbits;

Vsym = L_l Siym,i (16)
0<i<n
0<7<n—i
where
Sl ymi = {2 € Sym,(R) | sgn(z) = (n—i — j,j)} (17)

with integers 0 < i < nand 0 < j < n—1i A Gyyp-orbit in S,y is called a singular orbit. The ‘
subset Syym i = {& € Vyym | rank(z) = n — i} is the set of elements of rank (n — 7). It is easily seen

that S,ym == [_]19.5" Soym,i and Sy, i = Uogjgn—z‘ Sym i- Bach singular orbit is a stratum which not

only is a G-orbit but is an SL,, (R)-orbit. The strata {$?

Jym,i}1<i<n,0<j<n—i have the following closure

inclusion relation

" )
&) > Siym,i-}-l u Sﬁym,i+17 (18)

sym,i

J
where S'sym,i means the closure of the stratum Ssym',-.

1.7 Orbit decomposition of M, ., (R).

The vector space V' decomposes into a finite number of G-orbits;

V= || Swua (19)

0<v+pu<ln
o<y, p
0§a§u

where

Sw.ua) = {Z € Mnm(R)

rank(zI, o z)=v
rank(z)=n—pu (20)

sgn(zly,q¢'r)=(v—a,a)

with integers 0 < v+pu <n,0<v,pand 0 < a < v. Each set S, ,.4) is a G-orbit in V. The codimension
of S(,u;0) in V' is computed easily and it is given by "

codimy (S pq0)) = plm = n ) + (n —v = p)(5(n—p—v=1) +1) (21)



97

A G-orbit in S is called a singular orbit,i.e., an orbit of codimension larger than 1. We denote

o rank(zlp otz)=v | _
s(u,#) = {.’L‘ € Iwn,m(R) ranﬁzp)’f:nx_)u } = I__I S(u,ll;a) (22)
0<a<ly
- k(eI te)=v _
. S(,,;a) = {:L‘ € Afn,m(R) Sgnr&nfp,:t:l’):(g—“:“) = U S(V,#;a) - (23)
0<p<n—v
and »
50) = {2 € My m(R) | rank(zl, ,'z) = v} = U S0 (24)
0<pu<n—v

In particular, the open orbits are the orbits ih V-8 =5() =S, and S 0,4) = Vn_a.. The singular
set S is given by

S= L_I Swy = |_| Swp) = u S(V’“;a) | (25)

0<v<n—-1 0<rvLn—-1 - 0Lvn~1
0<uln—v 0<u<n—v
0<aly

Each singular orbit is a stratum which not only is a G-orbit but is an SL, (R) x SO, 4(R)-orbit. The
strata {S(U,u;a)}05,,5,1,05“3,1_1,,095,, have the following closure inclusion relation '

S(u,u;a) 2 (S(V—l,u;a) u S(u—l,,u;a-—l)) U S(u,u+1;a)s (26)

where S, ,.q) means the closure of the stratum S, ,.q).

1.8 Relations of singular orbits.

Proposition 1.5 (Relations of singular orbits.). 1. For an open orbit V; (i=1,2,... ,n+1) in

V — S, we have
VN Vigm,i) = Vi = S(n04) @
2. We have
VN (Slymi) = Sty = L Stami) (28)
0Spusn—v

3. The largest dimensional orbit in w"l(Sf) 15 S(n—i,0,)-

2 Statement of the main results.

In this section we shall give the main problems and results. When we give a complex (n+ 1) dimensional
complex vector @ € C*t! we can determine the exact order of poles of P[a’s](m) and the exact support of
the hyperfunctions appearing in the principal part of the Laurent expansion. We shall give the statement
of the theorems in this section without proofs. Their proofs will be given in §5.

2.1 The problem.

The fundamental question of the study of invariant hyperfunctions obtained as complex powers of rela-

tively invariant polynomials is the following.

Problem 2.1. What are the principal parts of the Laurent expansion of P[a’sl(x) at poles 7 What are
their exact orders of poles 7 What are the supports of negative-order coefficients of a Laurent expansion
of Pl&s](z) at poles ?
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2.2 Coeflicient Vectors.

In order to determine the exact order of the pole of Pll(z) at s = so, we introduce the. coefficient

vectors
- d®so] = () [sol, sl . di2 [sa]) € (€7 S (29)
with k = 0,1,...,n. Here, (C**!)* means the dual vector space of C**+!. Each element of d®)[so] is a

linear form on @ € C**! depending on so € C ,i.e.,a linear map from C"*! to C,
d¥)[so] : €1 5 @ (dM[s0), @) € C. (30)
We denote
(P s, @) = ((d”[s0], @), (@ Isal, @), - (A4 0], @) € C 2. (31)

Definition 2.1 (Coefficient vectors d®[sg]). Let so be a half-integer, i.e., a rational number given
by q/2 with an integer ¢. We define the coefficient vectors d* )[50] (k=0,1,...,n) by induction in the
following way.

1. First, we set
d®[so] = (d§[so), d{"[s0], - - ., d[s0]) (32)
such that (d{”[so], &) 1= a; for i = 0,1,...,n. |
2. Next, we define dM{sq] and dP[sy] by
dV[s] == (d§”[s0], dM[s0, - .., d2 [s0)) € ((C* 1)), (33)
with d{"[sq] := d{[s0] + e[so)d%; [so], and
d@[se] := (dP 5], d[sa, - .., d{? 4 ls0]) € (C*F1))* 7, | (34)

with d{[s0] := d\* [s0] + d,[s0]. Here,

W= 0
A strict half-integer means a rational number given by ¢/2 with an odd integer q.
3. Lastly, by induction on k, we define the coefficient vectors d®)[sp] for k=0,1,...,n by
4@V 5] := (déﬂﬂ)[so],dEZIH)[so],.7.,d£,2142',1)1[ o]) € ((Cr+1y* =2, (36)
with d?[so] := d¥* P [so] — dy; V[so], and
d®[so] == (a5 [s0), d™ 50}, . .., dPyls0]) € ((CH)*)"=2+1, (37)

with 4" [so] = d\* P [so] + iy [so].
Then we have the following proposition.

Proposition 2.1. Let so be a half-integer. For an integer i in 0 < i < n—2 and @ € C"*!,
(dW[so),@) = 0, then (D [s],d@) = 0. In other words, if (dG+[so],@) # 0, then (dD[s0],a@) # 0.

Proof. This proposition is a trivial consequence from the definition of d¢ [50] ' O
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Corollary 2.2. Let sy be a half-integer. Then we have the following results.

1. There exists an even integer i in 0 < io < n + 1 such that

i ) 0 foralloddiin(<i< 1.
dD]s)] @) is 47 s 38
(d¥ls0l, ) 35 {: 0 foralloddiinn>i> . (38)
2. There exists an odd integer iy in —1 < i; < n+ 1 such that
; o 0 foralleveniin0<i<i.
dP[so), @ 7 , N 39
(™ lsol, @) is {: 0 forall eveniinn>i>i. (39)
Proof. We can easily prove these corollaries by induction on i. O

2.3 Results on the poles of the complex power functions.
Using the above mentioned ‘vectors d(k)[s(;], we can determine the exact orders of poles of Pl#](z).

Theorem 2.3 (Exact orders of poles). The exact orders of poles of Plasl(z) at s = -—’%‘,‘—1 with inte-
gersin 1 <k <m—n—1 are computed by the following algorithm. :

1. At s = —Zﬁj'—l( = ..), the coefficient vectors d(k)[—z—"#] are defined in Definition 2.1.
The exact order P13 ’]( ) at s = —2tl(y = 1,2 ...) is given in terms of the coefficient vector
' d(zk)[_ __'t_]
o
(a) If1<u< %, then Pla:5](z) has a possible pole of order not larger than u.
o If (dP[-2 2utl) @) = 0, then PI®3)(z) is holomorphic and the converse is true.
o For a fized mfegerp inl<p<u, if (d¥P+2)[-2 2utl]) @) = 0 and (d?P)[-2 2utl] gy # 0,

then Pl3:s] (z) has a pole of order p, and the converse is true.
o Lastly, if (d(zu)[—g—“—z"i], @ # 0, then P1%3)(z) has a pole of order u, and the converse is

true.
(b) If u> %, then Pfa”](x) has a possible pole of order not larger than 5]
o If (d(z)[ 2utl] @) =0, then P31(z) is holomorphzc and the converse is true.

e For a fized mtegerp inl1<p<|2],if (d+D[-2 411 3) = 0 and (d%P)[-2 2utl] @) £ 0,
then Pl 3}(.@) has a pole of order p, and the converse is true.

o Lastly, P[a 3](:0) has a pole of order |2 if (d""V[—24t1] @) #£ 0 (when n is odd) or
(d™[-2 2utl] @) # 0 (when n is even), and the converse is true.

2. At s = —u(u=1,2,...), the coefficient vectors d(k)[-—u] are defined in Definition 2.1 with e[~u] =
(=1)7%*1. We obtain the exact order at s = —u(u = 1,2,...) in terms. of the coefficient vectors

d(Zk'H)[—u].
(a) If 1 <u< %, then Pl33)(x) has a possible pole of order not larger than wu.
o If (d(l)[—u],c'i) =0, then Pl33)(z) is holomorphic, and the converse is true.
e For a fized integer p in 1 < p < u, if (d<2p+1)[—u],fi) =0 and (d(zp”l)[—u],&'> #0, then
Pls)(z) has a pole of order p, and the converse is true.
o Lastly, if (d(2"_1)[—u],d') # 0, then Plis] (z) has a pole of order u, and the converse is
true.
(b) If u> 2, then Pl%l(z) has a possible pole of order not larger than | 2L |
o If(dV][—v], @) =0, then P3s(z) is holomorphic, and the converse is true.
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e For a fized integer p in 1 < p < [24L], if (d®+V[—u),@) = 0 and (d%~V[—u],d) £ 0,
then Pl3:31(z) has a pole of order p, and the converse is true.

e Lastly, Pl%(z) has a pole of order |24 of (d™[—u],@) # 0 (when n is odd) or
(d™=D[—u],@) # 0 (when n is even), and the converse is true.

2.4 Results on the supports of the principal parts of Laurent expansions.
The exact support of Pl#*](z) is given by the following theorem.

Theorem 2.4 (Support. of the singular invariant hyperfunctions). Suppose that P1%%](z) has a
pole of order p at s = —%’—1 with integers k in1 < k<m—n-—1. Let

2 N [@-kt k+1
PEe) = 3 P () (s + 1) (40)
w=-p
be the Laurent expansion of Pl%%l(z) at s = —l—c-'fl. The support of the Laurent expansion coefficients
3 Ei_l_ -

P,E,a' 2 ](:r) is contained in S if w < 0.
e [a,-E+1] ' .
1. Let k be an even positive integer. Then the support of Py' * '(z) forw = =1,-2,...,~p is

contained in the closure S_oy,. More precisely, it is given by

3, kil
Supp(P,[L, 2 ](z)) = ( U S (nt2w,0,4))- (41)
Je{0<i<n+2w | (4§77 [~ L],a) #0}

g _ktlL
2. Let k be an odd positive integer. Then the support of Pi,a’ 2 ](a:) forw = —1,=2,...,—p is
contained in the closure S_s,_1. More precisely, it is given by

[@,- 54

Supp(Py (z)) = ( U S (n42041,055))- (42)

j€{0<j<n+2w+1 | ({727~ £EL] 3) 0}
Here, Supp(—) means the support of the hyperfunction in (—).

2.5 Results at the pole at s = —k—J2L1 with integers k in m —n < k.

The order of poles of the hyperfunction P[a’sl(:c) at s = —’% with k = m — n,m—n+1,... may
have poles of order larger than those given by Theorem 2.3. However, by restricting the hyperfunction

plas] (z) to a certain small open set U, Theorem 2.3 and Theorem 2.4 are valid for all poles at s = —’—“—'5—1

with £ = 1,2,.... We shall expain it.

Proposition 2.5. Consider the orbit S0y = S(0,0,0) defined by (22) and let xo be a point in S 0)-
Then there exists a non-empty open neighborhood of xo satisfying

U= || (SeoanU). (43)
0<v<n
0<aly
This means that S, ,.0) U =9 forallv anda in 0 < v <n—p,0<a<vifu>1 (On the other
hand, we can see easily that S(, 0.0y NU # 0 for allv and a in 0 <v <n,0<a <v.) The largest such
open set is

V- || Swue , (44)
1<psn
1<v<n—u
0<a<ly
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Then we have the following theorems

Theorem 2.6 (Exact orders of poles 2). Let U be the open set defined in Proposition 2.5. Then the
ezact orders of poles of P[&’s](x)IU at s = —’%i with k = 1,2,... are computed by the algorithms given
by Theorem 2. o’

Theorem 2.7 (Support of the smgular invariant hyperfunctlons 2). Suppose that P1%3)(z)y has
apoleoforderpats—~ L owithk=1,2,.... Let

g e P 31 k+1
PEA ()l = Z PP @)l (s +=5)" (45)
be the Laurent expansion of P3%l(x) at s = —&HL . The support of the Laurent ezpansion coefficients

a,-x1 : Yo . :
pPa== ](z')]U is contained in SNU if w < 0.

: G Et1 _
1. Let k be an even positive integer. Then the support of PE,“’ 2 ](a:)IU forw=—-1,-2,...,—p s
contained in the closure S_q,, NU. More precisely, it is given by

d,— 5
Supp(P™ 77 () |y) = ( U Stns2w,0,y) NU. (46)
je{0<ignt2w | ({7 EEL) a)£0}

2 _ h& B
2. Let k be an odd positive integer. Then the support of P,E,a’ 2 ](a:)|U forw =~1,-2,...,—p 1is
contained in the closure S_o,_1 NU. More precisely, it is given by '

Supp( [ a ](w)llf) = ( . U S(n+2w+1,0;j)) NnU. (47)
: je{0<i<ntaw+1 | ({72 V- ki) a)0}
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