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Necessary and sufficient condition for global stability

of a Lotka—Volterra system with two delays

KIRFFSIRFTHER FEEE RA  (Yasuhisa Saito)

1. Introduction

We consider the following symmetrical Lotka-Volterra type predator-prey system
with two delays 7, and 7

{ 2'(t) = z(t)[r1 + az(t) + az(t —m) — By(t — 7)) )
Y (t) = y(&)[r2 + ay(t) + Pt — m) + ay(t — )]
The initial condition of (1) is given as
{d@:¢@)za~n3350;wm>0 )
y(s) = ¥(s) 2 0,—12 < s <0 ; ¥(0) > 0. |

Here a, a, 3, r1, 2, 1 and T are constants with a < 0, 7y > 0 and 7, > 0, and ¢, ¢
are continuous functions. Obviously, we can take 3 > 0 without loss of generality. We
assume that (1) has a positive equilibrium (z*,*), that is

. —(a+a)r;—pry
Tr =

. _ Br1 — (a + a)re
(a+a)?+ 5

(a+a) + 32

> 0, > 0.

The positive equilibrium (z*, y*) is said to be globally asymptotically stable if (z*, y*)
is stable and attracts any solution of (1) with (2). Our purpose is to seek a sharp
condition for the global asymptotic stability of (z*,y*) for all 7, and 75, making the
best use of the symmetry of (1). In this paper we give the following necessary and
sufficient condition for the global asymptotic stability of (z*,y*) for all 7, > 0 and
T2 2 0,

Theorem. The positive equilibrium (z*,y*) of (1) is globally asymptotically stable for
all 1 >0 and 7 > 0 if and only if

Ve + 32 < —a

holds.
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Gopalsamy [2] showed that if |a| + |#] < —a holds, then the positive equilibrium
(z*,y*) is globally asymptotically stable for all 7, > 0 and 7o > 0. It is clear that
Theorem improves the Gopalsamy’s condition for (1). Recently, Lu and Wang [7] also
considered the global asymptotic stability of (z*,3*) for (1) with o = 0.

When the system (1) has no delay, that is 71 = 1 = 0, it is easy to see that (z*,y*)
is globally asymptotically stable if and only if a + o < 0 [cf. Appendix]. So we can see
that the condition v/a% + 32 < —a in Theorem reflects the delay effects.

In the proof of the sufficiency of Theorem, we use an extended LaSalle’s invariance
principle (also see [8] and [9] for ODE), by which our proof is more complete than that
in [7].

2. Proof of Theorem

In order to consider the global asymptotic stability of the positive equilibrium (z*, y*)

of (1), we first introduce an extention of the LaSalle’s invariance principle.

For some constant A > 0, let C* = C([—A, 0], R*). Consider the delay differential
equations

2(t) = f(z) (3)

where z; € C" is defined as z,(0) = z(t+6) for —A <6 <0, f : C" — R" is completely
continuous, and solutions of (3) are continuously dependent on the initial data in C™.
The following lemma is actually a corollary of LaSalle invariance principle . and the

proof is omitted. (see, for example, [4, 5]).

Lemma. Assume that for a subset G of C™ andV : G — R,
(1) V is continuous on G. _
(ii) For any ¢ € G (the boundary of G), the limit l(¢)

1($) = lim V(¥)

YeG

exists or is +00.
(i) V(g) <0 on G, where V(g) is the upper right-hand derivative of
V along the solution of (3).
Let E={¢ € G| l($) < 00 and V(¢) = 0} and M denote the largest subset in E that
© s invariant with respect to (3). Then every bounded solution of (3) that remains in G

approches M as t — +00.
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Proof of Theorem.

(Sufficiency.) By using the transformation

IZ'ZJ?—Q:*, g:y—y*a

the system (1) is reduced to

{x’(t) = (z* + z(t))[az(t) + az(t — 1) — By(t — 72)]
y'(t) = (y* +y(t)lay(t) + Bzt — 1) + ay(t — 72)]

where we used z(¢) and y(t) again instead of Z(t) and %(t) respectively. Define
)

G= {¢7= (¢1,¢2) € C? | di(s) +z; > 0,:(0) + =} >0,i:1,2}

where C? = C([-A, 0], R?), A = max{r, 72} and (z},z3) = (z*,y*). We consider the
functional V defined on G,

2 . ! 0
9= 203 {00 -z B @4 S [ 0w 6)

i =177

It is clear that V is continuous on GG and that

,p_l»lqsrgaav(w) = oo
el

Furthermore,
Vigy(¢) = — 2a (a1 (0) + adi(—71) — Bd2(—T2)] $1(0)
— 2a[a¢p2(0) + B1(—71) + ada(—72)] $2(0)
£ (02 4+ 87 {[$200) — (=] + [0) — ¢3(~m)]}
— [ag1(0) + agy (1) — Bga(—72))*
— [aga(0) + B1(—71) + aga(—72)]"
— [a® = (a®+ %)) [$2(0) + ¢3(0)] <O

on G. From (5) and (6), we see that the trivial solution of (4) is stable and that every

T1

(6)

solution is bounded.
Let

E = {¢ € G|l(¢) < c0and V(¢) = 0},
M : the largest subset in E that is invariant with respect to (4).

For ¢ € M, the solution z(¢) = (z(t+6),y(t +0)) (—A < 8 < 0) of (4) through (0, $)
remains in M for ¢ > 0 and satisfies for ¢t > 0,

V(4)(zt(¢)) =0.
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Hence, for t > 0,

{ az(t) + az(t — ) — Byt — 1) =0 ™
ay(t) + Bz(t — 1) + ay(t — ) =0,
which implies that for ¢ > 0, |
) =y(t)=0
Thus, for t > 0,
z(t)=c, ylt)=c (8)

for some constants c¢; and ¢;. From (7) and (8), we have

at+a —f |ijal |0
B a+allc |0’
which implies that ¢; = ¢; = 0 by our assumptions and thus we have
z(t) =y(t) =0 for t>0.

Therefore, for any ¢ € M, we have

#(0) = (2(0), y(0)) = 0.
By Lemma, any solution z; = (z(t + 6),y(t + 0)) tends to M. Thus

lim z(t) = lim y(¢) =0.

t—-+00 t—+oo

Hence, (z*,y*) is globally asymptotically stable for all 4 > 0 and 75 > 0.

(Necessity.) The proof is by contradiction. Assume the assertion were false. That is,
let (z*,y*) be globally asymptotically stable for all 7 > 0 and 7, > 0 and Va2 + 3% >
—a. '

Linearizing (4), we have
{ 2'(t) = z*[az(t) + az(t — 1) — By(t — 72)]
Y (t) = y'lay(t) + Bt — m) + ay(t — 72)].

Now, we will show that there exists a characteristic root Ag of (9) such that

Re(/\o) >‘0 (10)
for some 7 and 7, which implies that the trivial solution of (4) is not stable (see [1,
p.160, 161]). |
When a > —a, (z*,y*) is not globally asymptotically stable in case 73 = 75 = 0 [cf.
Appendix]. Therefore, we have only to consider the case a < —a.
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(I) The case 0 < |a| < —a.

Let 1y = 75 = 7, then the characteristic equation of (9) takes the form
M4 phAtqg+ (r+sN)e ™ +ve =0 (11)

where p = —a(z*+y*), ¢ = a*z*y*, r = 2a0z*y*, s = —a(z*+y*) and v = (a®+6°)z*y".
When z* = y*, (11) can be factorized as

A=z {a+(@+iB)e™} [A—2"{a+(a - iB)e "} = 0. (12)
Let us consider the equation
A—z*{a+ (a+iB)e ™} =0. (13)

Set o = bcos @ and 5 = bsin 6, where b and § are constants with b > 0. Then, we note

that b > 0 because of a < 0 and v/a? + 2 > —a. Substituting A = iy into (13), we
have

iy — 2" [a + b{cos(yr — 0) — isin(yr — 6)}] = 0. (14)

By separating the real and imaginary parts of (14), we obtain

bx* cos(yr — ) = —az”*
{ bz* sinEzT — Hi = —y. (13
From (15), we have
(bz*)? = (az*)? + o2
In order to solve y in (15), define the following function
fiY) =Y + (az*)? — (bz*)? (16)

where Y = y2. Then f, is an increasing linear function and
£1(0) = 2%{a® — (o® + %)} < 0.

Thus, it follows that there exists a positive root Yy of fi(Y) = 0. Substituting yo,
which satisfies Yy = 33, into (15), we can get 7 such that (13) has a characteristic root
1Yo When 7 = 7.
Furthermore, taking the derivative of A\ with 7 on (13), we have
dA —xz*bef \e~7
dr 1+ avbrelerr

NT_ 1
dr) — =AA—z%a) X

Using (13), we obtain
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Hence,

sign

!
Re Q = sign | Re dA
dr |\ o v dr NP
=1Y0, T=T0 =1Y0, T=T0

. 1 7o _ 1
= gign | Re — — — || =sign |Re | ———— || >0,
© [ (——%yo(zyo — z*a) zyo)] s { (y%’ + Zyox*a)]

which implies that (10) holds. Therefore, the trivial solution of (4) is not stable, that
is, (z*, y*) is not stable near 75, which is a contradiction.

When z* # y*, (11) cannot be factorized as (12). Substituting A = iy into (11), we
have

(=92 + piy + q)e¥™ + 1 + siy +ve” ¥ = 0. (17)
By separating the real and imaginary parts of (17), we have

{ [(=y* + q)? = v* + p*y?| cos(y) = (r — sp)y* — (g —v)
(=4 + @)® —v* + p*y°sin(yr) = sy’ + [rp — s(g + v)]y
and thus

2

(= fgP ot ] = [(r—sp)? — (g - o)+ [s® + [rp — s(g+v)ly] -

Define the following function

L) ==Y +9°* =+ Y = [(r — sp)Y —r(qg —v)]?

(19)
—Y[sY +7p—s(g+v)]?

where Y = y2, then f, is a quartic fuction such that f; — 400 as |Y| — +oo; Since
£20) = [@® = (@2 + )P[(a + @)* + f[(a — @) + B°)(a"y")* > O,

we cannot immediately find positive zeros of (19) and so we have to investigate fs in
more detail. Define

F(Y)=[(-Y + ¢ - +p°Y]?
G(y) = =[(r — sp)Y — (g —v)]*
H(y) = =Y[sY +rp—s(qg+v)]%,

then fo = F+G+ H. It is easy to see that positive zeroes of ', G and H are mutually
different as long as z* # y*. Hence, the value of f, at the positive zero of F' is negative,
which, together with f5(0) > 0, implies that there exists a positive root of fo(Y) = 0.
- Tt is also clear that there exists another positive root of fo(Y) = 0 because fy — +00
as Y — +o00. Thus, one of the two positive roots is a simple root at least.
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Let Yj be such a simple root. Substituting yo, which satisfies Yy = 32, into (18), we
can get some 7 such that (11) has a characteristic root iy at 7. We note that iy is a
simple root of (11) because Y; is a simple root of fo(Y) = 0. |

Furthermore, taking the derivative of A with 7 on (11), we have

X _ —2X(AZ+pA+q) — A(r+sh)e™"
dr 22 +p+2r(AN2+pA+q) +eM[s+7(r+s))]

dr _1_ 2A+p+se™ T
dr) =202+ pA+q) = Ar+she > X
Hence, we have
-1
sign | Re dA = sign | Re dA
dr N dr .
=iyo A=iyo

. ( 21y + p + se~WoT T )
= sign | Re : TR . — - —
i —2iyo(—y§ + piyo + q) — iyo(r + siyo)e=%™ iy, ) |

. . ivor -1\
= sign | Re ( . 3 22:{/0 tPY = . - )
_ —2iyo(—48 + piyo + q) — iyo(r + siyg)e~#oT ]
(a? + aa cos(yoT))(z* — y*)?
(p + scos(yo))? + (250 — ssin(yo7))? ]|

(20)

=sign |1+
Since
(a® + aacos(yo7)) (2" — ¢*)? > ala + |af)(z* — y*)* > O,
the last expression in (20) is positive. This implies that (10) holds, which is a contra-
diction.
(IT) The case a = 0. ‘
Let 7, = 7o = 7, then the characteristic equation of (9) takes the form
M4pr+g+ve T =0, (21)
Substituting A = 7y into (21), we have
—y? + piy + g+ ve VT =0, (22)

By separating the real and imaginary parts of (22), we have

veos(2yT) = y? — ¢
(2y7) (23)
vsin(2yr) = py . '

and

v? = (¥ — q)® + (py)*.
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Define the following function

fs(Y) = (Y = ¢ +pY =0 (24)
where Y = y2, then fs is a downwards convex quadratic function and

f3(0) = (a* = 82"y < 0.

Thus, it follows that there exists a positive simple root ¥; of f3(Y") = 0. Substituting yo,
which satisfies Y = 92, into (23), we can get some 7 such that (21) has a characteristic
root iyy at 7. Here iy is a simple root of (21) by the same reason as above.

Taking the derivative of A with 7 on (21), we have

dx _ 2ule AT
dr 2\ +p—2ure~27’

dA '1_ 22 +p T
dr]  2X(=X2—=pA—q) X

-1
Re (@ )} = sign | Re ((Q) )}
dr A=igo dr A=igo
] 210 + p T )}
=sign | Re | — - - —
1 <2zyo(y3 —PiYo—q) Yo

0 iy + p )]
= sign | Re -
& i <2yo[pyo + (43 — q)]

= sign :2y§ + a*(z*? + y*z)] > 0.

Hence,

sign

This implies that (10) holds, which is a contradiction.
(IIT) The case a < a.
Let 7, = 7 and 7, = 0, then the characteristic equation of (9) takes the form

M4 A+ G+ (F+3Ne =0 - (25)

where p = —az* — (a + @)y*, § = ala + a@)z*y*, 7 = [a(a + o) + Blz*y*, § = —azx*.
Let us use p, ¢, r and s again instead of p, g, 7 and 3 respectively. Substituting A=1y
into (25), we have

—y? + piy + g+ (r + siy)e™ =0, (26)
By separating the real and imaginary parts of (26), we have

(r? + s%?) cos(yr) = r(y* — q) — spy’
(r? + s%y?) sin(yr) = sy(y® — @) + pry
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and
2+ 522" = [r(s? — @) — sv?] " + [sw(? — @) +pry]
Define the following function
fiY) =Y [s(Y —q) + pr]2.+ [r(Y —q) — spY]* — [7"2 + 82Y]2 (28)
where Y = y2, then f4 is an upwards cubic function to the right and
£1(0) = [a(a+ a) + B7P[(a + @)* + B%)[a® ~ (o® + )] (z"y")* < O.

Thus, there can exist some positive roots of f4(Y) = 0. Now, let us show that there
exists a simple root in such positive roots. We see that

i) =38Y? 12 [80F — 20 = ) + 7] Y + 558" — 20%) + 720" - 20)
and

Y(Y) = 65*Y +2 {52(1)2 — 29— 5%+ rz] .
Let f/(Y) =0, then
3sY + [82(p2 — 29— %) + 7"2] =0,

and thus we have

-3s*f,(Y) = [82(])2 —2¢—$%)+ 7‘2]2 — 352 [sZ(q2 —2r?) + r2(p? — 2q)]

_ $*4y*2 [a2(4a2 —a2):1:*2 +{a(a+a) +,32}2y*2]
x [{ala+a) + £} — o*(a+ a)’|

- 2
+ otz [(a2 — oz — (a+ a)2y*2] :

(29)

Since a < a < 0, (29) is positive. This prove that there exists no triple root of f4(Y) =
0, which implies that there exists at least a positive simple root Yg of fs(Y) = 0.
Substituting 4o, which satisfies Yy = 32, into (27), we can get some 7 such that (25)
has a characteristic root iy at 7. Here again 4y, is a simple root of (25).
Taking the derivative of A with 7 on (25), we have

d\ M+ s\)e 7
dr 2 +p+e s —7(r+s\)]

dX T 2A+p4se™ T
dr Ar+sA)e™> A

2\ +p n S T
“AA24+pr+q)  Ar+sh) A




163

Hence, we have

sign

dA
Re ('&—7':

(@)L

= sign | Re - - + - - - — (30)
8 { (—Wo("yg +piyo+q)  tyo(r+siyo) o

Slg [s2y8 _|_ 27,2y(2) _ 82q2 _ 2,),.2q +p2r2]
== 1 .
[(pyo)? + (w3 — @)2][r? + (sy0)?]

Since
_ $%q% — 2r2q + p*r? |
— [azx*z + (a+a)2y*2][a(a +a) +52]2m*2y*2 _ a2a2(a+a)2m*4y*2
> [a22*2 + (a + @)%y (a + a)2z*%y*? — a20?(a + a)2z*ty*?
= o?(a+ @)z %y > 0,

the last expression in (30) is positive. This implies that (10) holds, which is a contra-
diction. This completes the proof.

Here, we give the following three portraits of the trajectory of (1) with (2), drawn by
a computer using the Runge-Kutta method, to illustrate Theorem ( r; = 10, 7, = —10).

Fig.l a=-5,a=3,8=399 (VaZ+ 3 < —a)
n=17=2 (¢19)=(3+0.8t, 3.5+sin(8t))
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Wil

i

Fig2 a=-5a=3,=4 (Va>+ [ = —a)
n=1m=2 (¢¢)=(4+t, 3.8+ sin(30t))

y

i
it
A1

T

Fig3 a=-5a=3,6=401 (Va2+ (%> —a)
T1=2, 1 =3, (¢,¢) = (2+0.5, 3 +sin(7¢))

3. Appendix
When 7, = 75 = 0, the system (1) become .
z'(t) = z(t)[r1 + (a + a)z(t) — By(t)]

{ y'(t) = y(

(31)
() = y(®)r2 + Bz(t) + (a + a)y(t)].
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By using the transformation

(31) is reduced to
{ 2'(t) = (=" + z(t)[(a + a)z(t) — By(t)] (32)
y(t) = (y* +y(1))[Bz(t) + (a + a)y(?)],
where we used z(t) and y(t) again instead of Z(t) and §(t), respectively. Consider the

following Liapunov function _
Viz,y) = <w — 2" log = :x ) + (y —y*log? ;:y ) (33)

for £ > —z* and y > —y”, then V is positive definite. Calculating the derivative of V

along the solution of (32), we have
Vi) (2,9) = (a+ )(a® + 7).

Clearly, V(gg) is negative definite if and only if a + @ < 0 holds. The well-known
Liapunov theorem shows that the origin (0,0) is globally asymptotically stable if and
only if a + a < 0 holds. '
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