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Stai'-shaped periodic solutions for

x(t) = —af1 — [Ix@)|*}RO)x([])

KRESBEERPIPE KA FA (Sadahisa Sakata)
KERFFILKFETFE R 11T (Tadayuki Hara)

1. Introduction

Recently in [1], Hara considered a 2-dimensional delay differential system

x(t) = —a{l - [Ix@)|*}RO)x(t - 1), (1.1)

_ [cosf —sinb Y o 2., 9 ’
where a > 0, R(6) = (sin@ cos 8 ), 0] < 5 X = (y) and ||x|| =z +y* He gave

a conjecture : ,
Conjecture. There exists a constant ag > 7/2 — |0| such that a > ag implies the
following :

(a) If0/w is rational, then (1.1) has a star-shaped periodic solution.

(b) If6/m is irrational, then each solution orbit densely fills out an annular region

centered at the origin.

Our purpose is to give an answer in some sense to this conjecture for an approximate

system to (1.1)
x(t) = —a{1 — [x@®)|2}ROx([£)), (12)

where [-] means the greatest-integer function.
We shall consider the system (1.2) together with the initial condition

X(to+ s) = ¢(s) for s € [-1,0], (1.3)

where ¢ € C, the family of all continuous functions from [—1,0] into R?. In what
follows, N denotes the minimal integer not less than the initial time ¢,. Then N = %,
if ¢y € Z, the set of all integers, and N = [to] + 1 if ¢y ¢ Z. Furthermore, Q means the
set of all rational numbers. :
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Our results in this paper are similar to ones ([2]) for a linear system
x(t) = —aR(O)x([t) (1.4)
which is the first approximate system for (1.2).

2. Preliminary proposifions

In this section, we give preliminary propositions to prove our theorems.
For each solution x(¢) of (1.2) and each integer n > N, there exists one and only
one ¢ € [0,27) such that ‘ o

ﬂm=Rw(W?D. (2.1)
Changing variables

u(t) = R(—(0 + 9)x(2) ()

or

x(t) = R(0 + ¢)u(?),

we obtain the following proposition.

Proposition 2.1. Let x(t) be a solution of (1.2). Then u(t), determined by (2.1) and
(2.2), satisfies for any integer n > N :

() M@l =IOl fort>n.
(b) u@%ﬂﬂMW(WM)-

—sinf
© alt) = —ofl — [u@®)|?} (”"(O”)”) for t€fn,n+1).

This proposition follows by elementary calculation and also shows :

Proposition 2.2. Let'x(t) be a solution of (1.2). Then the following are valid :
(a) x(N)=0 implies x(t) =0 for t > N.
(b) |Ix(to)|| =1 implies x(t) = x(ty) for t > t,.
() |Ix(to)|l <1 implies |x(t)|| <1 for t > t,.
(d)  |Ix(o)|l > 1 implies ||x(¢)|| > 1, whenever x(t) exists.

Proof. We prove only (c) and omit the proof of others. First, suppose [|x(t;)|| = 1
for some t; < N and ||x(t)|| < 1 on [to, ;). Using change of variables

)= (149 = R0+ o))
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With : o
x([tal) = Rlpo) (""‘“g"])“), |

we have v(t) = v(tp) and _
(1) = —alx(fta) {1 - u(®)? - v(t0)?} (2.3)

(
for t € [to,t1), where u(tp)? < 1 —v(¢9)%. Since u = %4/1 — v(ty)? are critical points
“for (2.3), uniqueness of solutions for (2.3) guarantees oo ’

—4/1 = ’U(to)2 < u(t) < 4/1— 'U(t())z on [t07t1]7

which implies

()l = u(t)? +v(t,)? < 1

* This contradicts the supposition ||x(t1)[| = 1. Therefore x(t) satisfies ||x(¢)|] < 1 on
[to, N]. Next, suppose ||z(t1)|| = 1 for some t; > N and ||x(t)|| < 1 on [to, ;). Then
there is an integer n > N fulfilling n < t; <n+ 1. For convenience sake, put

p=lx()ll, B= \/1—psm9

It follows from Proposmon 2.1 that
i(t) = —ap{B* — u(tf} 2.4
and '
9(t) =0 or w(t)=—psind (2.5)

u(t)
u(t)

Ix(¢1)]| < 1 holds, a contradiction. Thus we conclude that ||x(¢)|| < 1 for ¢ € [to, 00).
This completes the proof. [

fort € [n,n+1), where u(t) = ( ) . Therefore we can easily show that the inequality

Remark 2.1. Propositions 2.1 and 2.2 show that every solution x(t) of (1.2) with
x(N) # 0 moves straightly from x(n) to x(n +1) ast does fromn to n+ 1. Therefore,
if |x(n)|| = 0 as n — oo, then the solution x(t) approaches the origin as t — co.
Furthermore, if x(N +m) = x(N) for some integer m, then x(t) runs on a star-shaped
periodic orbit for all time. ' | '

Now, we prepare several lemmas for proving our theorems in the next section. Let
0 < p <1and put 8 =4/1—p?sin®f. Then it is easy to see 0 < pcosf < 8 <'1. So,
defining the function f on (0,1) by
_' 1 B+ pcosf
f(p) - P,B ]‘Ogﬂ,_pcose7

we obtain the following lemma.
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Lemma 2.1. The function f is continuous and strictly increasing in p, and satisfies

lim f(s) = 20086, lim_ f() = co.
Proof. It is convenient to put

B+ pcosf
= log ———.
g(p) % s
Then it is obvious that g is positive and continuous, and hence f is also. Since § tends
to 1 as p — +0, it follows that g(p) tends to 0 as p — +0, and so L’Hospital’s theorem
asserts
. o 8 (p) T ’
Jim f(p) = lim rein Jim g'(p).
Here, elementary calculation shows _
2cosf
/
gp) = —77
V)= a-m8
This implies that f(p) tends to 2cos@ as p — +0. On the other hand, since 3 tends
to cos§ as p — 1 — 0, the equalities
lim fp) = — lim g(p) = o
hold. Differentiating f(p), we have

f(p) = 280/ = 1%) ~ () + (g(p)psin® 0)/ 5

(0B)?
and then
’ h(p) — g(p)

f'p) = - BE (2.6)
where h(p) = (2pcos6)/(1 — p?). It is easy to see that h(p) tends to 0 as p — +0 and
oy 2cos8(1+ p?)

S e

Since 1 — p? < 82 < B < B(1 + p?), it follows that
2 cos B(1 + p?

=mr
This, together with the fact

= K (p).

Jim g(p) = lim h(p) =0,

implies that

g(p) < h(p) for 0<p< 1.

Hence we can conclude from (2.6) that f(p) is strictly increasing in p. Thus the proof
is now completed. O
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Proposition 2.3. Let x(t) be a solution of (1.2) satisfying 0 < ||x(N)|| < 1. Then,
for any integer n > N, the following are valid :

(@) a=f(x®)) implies [x(n+1)| = [x(n).
() a<f(x@I) imples |x(n+1)|| <lx(®)].
(© a>f(lx@)) implies |x(n+1)|| > [lx(n)]].

Proof. In the same manner as the proof of Proposition 2.2, we get (2.4), (2.5),
u(n) = pcos @ ' (2.7)

and also —8 < u(t) < B for t € [n,n + 1]. Applying the quadrature to (2.4), we have
B+un+1)  B+u(n) 2008

F-unt1) fuln) 29
On the other hand, u(n + 1) = —u(n) if and only if
B—u(n+1) B+ u(n) (2.9)

| B+uln+1)  B—u(n)
Here, if a = f (p), then (2.7) asserts

B 1 B+ u(n)
B CB—um)’

and so (2.9) follows from (2.8). Hence we can conclude from Proposition 2.1 (a) and
(2.5) that

a= f(Ix(n)|) implies [x(n+ )| = [x(n)|.
In the same way, we arrive at the conclusion that (b) and (c) of this lemma are valid. = [J

The following lemma is an immediate consequence of Lemma 2.2 in [2].

Lemma 2.2. There exists a positive integer m such that R(m(20 — 7)) = I if and only
if the ratio 6/7 is rational.

3. Theorems

Let ¢ be an initial function with ||#(0)|| < 1. Then Proposition 2.2 asserts that the
solution x(t) of (1.2) and (1.3), satisfies [|x(¢)|]| < 1 on [to, 00). First of all, we give a
sufficient condition for such a solution to approach the origin as ¢ — co.

Theorem 3.1. Assume o < 2cosf. Then each solution x(t) of (1.2) with ||x(to)|| <1
~ approaches the origin as t — oo, and also the zero solution 1s stable.
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Proof. We may assume that 0 < ||x(N)|| < 1. Then Lemma 2.1 asserts a <
F(lIx(N)]])- It follows from Proposition 2.3 that

Ix(N+ DI < [x(V)]| < 1.
Repeating this argument, we have
[x(n+ DIl < [Ix(n)]| <1

for any integer n > N. So, suppose the sequence {||x(n)||} converges to a positive pg
as n — oo. Then it is clear that

%)l = po (3.1)
for any n. Now, consider a system
y(®) = —of1 - [ly®I*}R(0)¢, ¥(0) =¢&, (3.2)
where ||§|| = po. Proposition 2.3 asserts that the solution y(t;0,£) of (3.2) satisfies |

Iy (1;0,€)11 < lI€ll = po,

because o < f(||§]|). Since the set S = {£€ € R? : ||| = po} is compact, continuous
dependence of solutions on their initial values shows

sup{|ly(1;0,€)|| : § € S} < po.
Hence there exist a positive € and an integer K such that n > K implies
[x(n+ 1|l < po — e,

because ||x(n)|| — po as n — co. This contradicts (3.1). Therefore we arrive at pg = 0,
and so ||x(n)|| tends to 0 as n — oco. Thus we conclude from Remark 2.1 that x(t)
approaches the origin as t — co. Next, we choose ¢ so that

(1+a)llefl <1,
where ||@|| = sup{||#(s)|| : =1 < s < 0}. Then it follows from Proposition 2.2 that
%@l <1
on [tg, c0). Hence (1.2) implies that
1@ < lx(t) | + et — 1) {1 — [Ix@)I*HIx (LD < (1 + )|l
for't € [ty, N]. In particular,
IX(M)]| < (1+ a)|1¢]l
Since the sequence {||x(n)||} is strictly decreasing in n, we have from Remark 2.1 that

=@ < =MW < 1+ )il
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fort > N, and hence

Ix@®l < (1+a)llg]
for ¢ > t9. This shows that the zero solution is stable. Thus the proof is completed. [
Next, we shall give a sufficient condition for (1.2) to possess star-shaped periodic
solutions. This result is a consequence of the following proposition.

Proposition 3.1. Assume that o > 2cos@ and 0/7 € Q, and let x(t) be a solution of
(1.2) satisfying f(||x(N)||) = a. Then there exists a positive integer m such that -

x(t +m) = x(t) (3.3)
fort > N.

Proof. Since domain of f is the interval (0, 1), it follows that 0 < ||x(N)|| < 1. Then
Proposition 2.3 and its proof show

—cos @
—sind

(N +1) = [lx(V)] ( ) _ R(26 — m)u(N)

or -
x(N+1) = R(20 — m)x(N),

and of course f(|Ix(N + 1)||) = a. Repeating this argument, we have
x(N + n) ="R(n(20 — m))x(N)

for any positive integer n. Hence Lemma 2.2 ensures the existence of a positive integer
m such that

x(N + m) = x(N). (3.4)
Since the System (1.2) is autonomous, we then arrive at the -conclusion that |
x(t +m) = x(t)

for t > N. This completes the proof. [J

Theorem 3.2. Assume that & > 2cosf and 0/m € Q. Then there exist star-shaped
periodic solutions of (1.2).

Proof. It follows from Lemma 2.1 that there exists one and only one p € (0,1)
satisfying a = f(p). Put o =ty — [to], and choose ¢ € C so that
B+pcosf —(B—pcos g)e2ePP(s+1)
P(s) = B+ pcos @+ (8 — pcos f)e2xpBls+1)
— psinf
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or

ﬁ - ¢u(3) — ﬁ T pCOSO e2apﬁ(s+1)
B+ duls) B+pcosd ’

for s € [—1,0], where ¢(s) = (Zi“gj;) and B = 1/1 — p?sin® . Then it is easy to see
that ¢, (—1) = pcosb, ¢,(0) = —pcosf and

du(8) = —ap{B? — du(5)},

dv(8) = —psinf

which implies

de) = —al1 ~ 19t} ()
for s € [-1,0). So, define 9 € C by

d(s+o—-1) , —0<s<0
Y(s) =
R(m—20)p(s+0), —1<s< —o.
Then the function 4 fulfills |

#(0) = oL~ [} ) 55)

for s € [-0,0), and

¥ = o1~ IwIPRE-20) (5) 55)

for s € [-1,—0). Now, let x(¢) be the solution of (1.2) with the initial condition
X(to + s) = R(0)Y(s) on [-1,0]. (3.7

- And, consider the case of ty € Z. Then [to] = N —1 < ¢y < N and it follows from (3.4)
that

R(m —20)x(N 4+ m) = R(m — 20)x(N)

and so

X([to] + m) = x([to])-
Thus x(t) fulfills
x(t) = —a{1 - ||x()|*}R(0)x([to]) (3.8)

for [to] + m <t < N + m. Furthermore (3.7) implies

x(lto) = RO)Y(—0) = BOH-D) = (7).
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On the other hand, by (3.7), the equality (3.5) becomes (3.8) for [tg] <t < t;. Hence
x(t) fulfills (3.8) on [[tg], N). By uniqueness of solutions for (3.8), we can conclude that
(3.3) holds on [[to), N]. Similarly, it follows from (3.6) and the equality

x([to] — 1 +m) = R(m — 26)x([to])

that (3.3) holds on [ty — 1, [to]]. Therefore, by Proposition 3.1, we arrive at the conclu-
sion that (3.3) holds for all ¢ > o — 1. Next, consider the case of {; € Z. Since tp = N,
(3.4) implies

x(tg — 1+ m) = R(m — 20)x(to + m) = R(w — 29)x(t0).

On the other hand, (3.6) becomes
x(t) = —a{1 — [x(®) 2} R(O)R(r — 20)x(to).

By uniqueness of solutions, we arrive again at the conclusion that (3.3) holds for all
t > to — 1. This shows that x(¢) is a priodic solution, more precisely a star-shaped
periodic solution. Moreover, for any ¢ € (0,27), the solution of (1.2) with the initial

condition
x(to + 8) = R(0 + ¢)¥(s) on [-1,0]

is also periodic. Thus the proof is now completed. [

In the case that a > 2cos 6 and /7 is irrational, the system (1.2) does not possess
nontrivial periodic solutions. But we obtain a similar result to Theorem 3.4 in [2].

Theorem 3.3. Assume that a > 2cosf and 0/7 ¢ Q, and let x(t) be a solution of
(1.2) with f(||x(N)||) = a. Then the trajectory of x(t) fort > N is everywhere dense
on the closed annular region {€ € R? : ||x(N)|| - |sin 8] < [|€]] < |x(N)|}-

The proof of this theorem is analogous to one of Theorem 3.4 in [2], and so it is
omitted.
Finally we describe a result which is more precise than Proposition 2.2 (d).

Theorem 3.4. Any solution x(t) of (1.2) with ||x(%o)|| > 1 possesses a finite escape
time T, that is, ||x(t)|| = o0 ast — T —0.

Proof. Suppose x(t) exists in the future. Then it follows from Proposition 2.2 (d)
that |Ju(?)|| > 1 and so ’

u(t) >0 on [n,h+ 1)



72

for each n > N, where u(t) = (ugg ) is the function determined by (2.1) and (2.2).
: v :

Since u(n) > 0, ||u(t)|| is strictly increasing in ¢ and hence
lu@®)ll 2 pny on [n,n+1),

where py = ||x(N)||. This implies

u(t) > apn(py — 1),

so that

u(t) > apn(ph —1)(n — N)
on [n,n + 1] for each n > N. Thus we conclude that
Ix(8)]| — 00 as ¢ — co. (3.9)
Now, consider the case of  # 0. Then there exists a posofive p* such that p > p*
implies
ap(p?sin® — 1) > . (3.10)
On ‘the other hand, according to the quadrature, we have from Proposition 2.1 (c) that

t ncos 6 |
tan™? %5&')' = tan~! P_;ES— + apnbn(t — n) > appbn(t — n)

for t € [n,n + 1), where p, = ||x(n)| and 8, = p2sin®f — 1. But (3.9) implies that

pn > p* for n large enough. Hence (3.10) shows that for such an integer n, the inequality

uln+ ) 7
tan™! ———2- > —
an s 5
holds, which is a contradiction. Therefore our supposition is false in the case of 8 # 0.

- Next, consider the case of § = 0. In this case, (c) in Proposition 2.1 becomes

u(t) = apa{u(t)® -1}, () =0.
According to the quadrature again, we have

u(t) —1 : Pn — 1 e2apn(t—n)
u(t) +1  pn+1
on each interval [n,n + 1), because u(t) > 1on [n,n + 1). But (3.9) implies that the
inequality '

(3.11)

——p"_le""’">1
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holds for n large enough. Hence it follows from (3.11) that
| 1 1
| u(n+§)—1>u(n+§)+1
for n above, which is a contradiction. Therefore the solution possesses a finite escape

time. This completes the proof. O

4. Numerical examples

The following figures are some orbits of (2.1) which illustrate Theorems 3.1- 3.3.

Flg 1. o =1.800< 2cos 6
R 0.2

e
S

Fig.2A. a = 1.805 > 2cosd Fig.2B. «a =1.805> 2cosf

T 0.2 e 0.2\
0:7, to =0, ¢(t):(0> , 0:-7., to =0, ¢(t):<0>,t2600
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hod

Fig.3. o=8211

6=2, to=0, ¢(t):(

0.999
0

Fig.4d. a=8.193 Fig.5. a=8.198

0= 7_7.rl-, to = 0, ¢(t) = (0.999) 0= , to= 0: ¢(t) = (

0

0.999
0

g
(o]
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