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1 Introduction
The characteristic polynomial of a square matrix is a basic concept in linear algebra

and its computation has important applications in automatic control and other fields.
For a constant martrix, several algorithms for computing the characteristic polynomial
has been given, and the major ones are Faddeev-Leverrier’s method, Lagrange interpo-
lation method, Hessenberg methods and etc. (see [1-2, 4-12]). Some times, we need
to compute the characteristic polynomial of a polynomial matrix or exactly compute
the characteristic polynomial of a constant matrix with integer elements. As being a
fraction-free method, Faddeev-Leverrier’s method sketched below is the only one among
above mentioned methods which can be applied to such problems directly.

Faddeev-Leverrier’s method ([2, 4]): Let

$A_{1}$ $=$ $A$ ,

$c_{i}$ $=$

$-^{\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{C}}\underline{\mathrm{e}A_{i}}$

$(1\leq i\leq n)$ ,
$i$

$A_{i+1}$ $=$ $A(A_{i}+c_{i}I)$ $(1 \leq i\leq n-1)$ ,

then the characteristic polynomial of matrix $A$ is given by $c(\lambda)=\lambda^{n}+c_{1}\lambda n-1+\cdots+c_{n}$ .
This is a fraction-free method and hence can also be applied to a polynomial matrix. It
needs $n^{3}(n-1)$ polynomial multiplications when it is used to compute the characteristic
polynomial of a polynomial matrix. Because the multiplication of two polynomials with
few terms and the multiplication of two polynomials with many terms are very different
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in computational time, it would be better to count the number of multiplications between
numbers than to count the numeber of multiplications between polynomials. For an $n\cross n$

univariate polynomial matrix $A(x)=A_{0}+A_{1}x+\cdots+A_{d^{X^{d}}}$ with dense matrices $A_{i}’ \mathrm{s}$ ,
Faddeev-Leverrier’s method needs

$n- \sum_{i=1}^{1}(d+1)(id+1)=\frac{n^{2}d^{2}}{2}+l.d.t$ .

matrix mulitiplications, i.e., $\frac{n^{5}d^{2}}{2}+l.d.t$ . number multiplications. Here, by $l.d.t.$ , we mean
“lower degree terms in $n$ and $d$”

Recently, Kitamoto presented in [5] a new algorithm for computing the characteristc
polynomial of a polynomial matrix based on Cayley-Hamilton theorem. We refer the
method given in [5] as CHTB method. The main idea of CHTB method is as follows:

The CHTB method ([5]): Let $A(x)=A_{0}+A_{1}x+\cdots+A_{d}x^{d}$ be an $n\cross n$ polynomial
matrix. Compute first the eigenvalues $\lambda_{1},$

$\ldots$ , $\lambda_{n}$ and eigenvectors $u_{1},$ $\ldots,$ $u_{n}$ of $A_{0}$ by
some numerical method. If $\lambda_{i}=\lambda_{j}$ for any $i\neq j$ , then by a similarity transformation,

say $\tilde{A}(x)=S^{-1}A(x)S$ where $S$ can be constructed from $u_{1},$ $\ldots,$ $u_{n}$ , if needed, there must
be a $1\leq l\leq n$ such that the following matrix

$G=([I]_{l},$ $[\tilde{A}_{0}]_{l},$

$\ldots,$
$[\tilde{A}_{0^{-1}}^{n}]_{l}\mathrm{I}$ (1.1)

(where, for a matrix $M,$ $[M]_{l}$ denotes the $l\mathrm{t}\mathrm{h}$ column of $M$) is nonsingular. Let

$c(x, \lambda)=\lambda n+C_{1}(x)\lambda^{n}-1+\cdots+C_{n}(x)$ ,

with $c_{i}(x)=c_{i0+C_{i1}}X+\cdots+C_{i}k_{i}X^{k_{i}}$ , be the characteristic polynomial of $A(x)$ . By Cayley-
Hamilton theorem, and noticing that $\tilde{A}(x)$ has the same characteristic polynomial with
$A(x)$ , we have

$c(_{X},\tilde{A}(x))\equiv 0$ ,

and hence
$[c(x,\tilde{A}(_{X}))]l\equiv 0$ ,

$\mathrm{i}.\mathrm{e}.$ ,
$[\tilde{A}(x)^{n}]_{l}+(C10+c_{11}x+\cdots+C1k_{1}xk1)[\tilde{A}(x)^{n-1}]_{l}$

(1.2)
$+\cdots+(c_{n0}+C_{n1}x+\cdots+c_{n}knx^{k_{n}})[I]l\equiv 0$ .

By equating the coefficients of $x^{i}(i=0, \ldots, D=nd)$ in (1.2), we get

$Gh_{0}=-[\tilde{A}_{0}^{n}]_{l}$ , (1.3)

$Gh_{i}=-f_{i}$ , $i=1,$ $\ldots,$
$D$ , (1.4)

$h_{i}=$ $(c_{1i}, \ldots , c_{ni})^{\mathrm{T}},$ $(i=0, \ldots , D),$ $f_{i}$ is the coefficient of $x^{i}$ in

$[\tilde{A}_{0}^{n}]_{l}+([I]_{l},$ $[\overline{A}(X)]_{l},$
$\ldots,$ $[\tilde{A}(X)^{n}-1]_{l})$
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Solving linear systrems in (1.3), (1.4), we get $c_{ij}$ .
This method needs $(d+1)n^{3}$ polynomial multiplications. It is also observed that

this method is faster than Faddeev-Leverrier’s method even when $d+1$ is bigger than
$n$ . The shortcoming of the CHTB method is that it cann’t be used to a polynomial
matrix that $A_{0}$ has multiple eigenvalues and, it needs to compute first the eigenvalues
and eigenvectors of $A_{0}$ .

In this paper, by introducing in an artificial constant matrix and an auxiliary vari-
able, we give a novel method, called Cayley-Hamilton artificial constant matrix method
(CHACM method). It needs no condition on the given matrix, needs not to solve any
eigenvalue problem and is division-free. The amount of the computation is asympototi-
cally $\frac{7}{12}$ of that of Faddeev-Leverrier’s method.

In Section 2, the main idea of CHACM method are formulated and the CHACM
algorithm with an improved version are given. In Section 3, computational tests are
given to show that our algorithms really work and to compare the CPU-time of our
methods with Faddeev-Leverrier’s method and other methods.

2 The CHACM method
Let

$E=$
$E$ satisfies that

$([I]_{1}, [E]1, \ldots, [En-1]_{1})=I$ ,

and hence is the best matrix for serving as the constant matrix in Cayley-Hamilton
theorem based methods. We will use it as the artificial constant matrix to give a novel
method for computing characteristic polynomial.

To compute the characteristic polynomial of an $n\cross n$ matrix $A$ with elements in,
e.g., $Q[z_{1}, \ldots, z_{m}]$ , we construct $M(x)=E+x(A-E)=E+xB$. If $c(x, \lambda)$ is the
characteristic polynomial of $M(x)$ , then $c(\lambda)=c(1, \lambda)$ is the characteristic polynomial of
$A$ . We give an algorithm for computing $c(x, \lambda)$ and therefore an algorithm for computing
the characteristic polynomial of the matrix $A$ .

Because $E$ is not only the constant matrix of $M(x)$ as the polynomial matrix with
variates $x,$ $z_{1},$ $\ldots$ , $z_{1}$ , but also the constant matrix of $M(x)$ as the polynomial matrix
with one variate $x$ , we will treat $z_{1},$ $\ldots,$

$z_{1}$ as paramteric coefficients. This will make the
program simpler and faster.

Let ..

$c(x, \lambda)=\lambda^{n}+C1(x)\lambda^{n}-1+\cdots+C_{n}(_{X^{\backslash })}$ .

Because $c_{i}(x)$ is the sum of all i-th order principal minors of $M(x)$ , the degree of $c_{i}(x)$

in $x$ is $i$ . Let $c_{i}(x)=c_{i0}+c_{i1}x+\cdots+c_{ii}x^{i}$ . By Cayley-Hamilton theorem,

$c(x,$ $M(_{X))}\equiv 0$ ,
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and thus $[c(x, M(X))]_{1}\equiv 0$ , i.e.,

$[M(x)^{n}]_{1}+C1(X)[M(x)^{n-}1]_{1}+\cdots+c_{n}(x)[M(x)^{0}]_{1}\equiv 0$ . (2.1)

Let $[M(x)^{i}]_{1}=m_{i0}+m_{i1}.x+\cdots+m_{ii}x^{i}$ . It is easy to see that:

(1) $(m00, m10, \ldots, m_{(}-1)0)n=I$ ;

(2) $m_{n0}=0$ ;

(3) If $m_{(i-1)}1,$ $\ldots,$ $m(i-1)(i-1)$ have been computed, then by the ralation $M(x)^{i}=$

$(E+xB)M(x)^{i}-1,$ $m_{i1},$ $\ldots,$ $m_{ii}$ can be computed by

$m_{ij}=E\cdot m_{()}i-1j+B\cdot m_{(-}i1)(j-1)$ , $(1 \leq j\leq i)$ ,

here we set $m_{(i-1)i}=0$ . The computation of $m_{ij}’ \mathrm{s}$ from $m_{(i-1)j}’ \mathrm{s}$ need $i-1$ multi-
plications of vectors by matrices and, the computation of all $m_{ij}’ \mathrm{s}$ need $\frac{1}{2}n^{4}+O(n^{3})$

multiplications in $D$ .
Substituting $[M(x)^{i}]_{1}$ and $c_{i}(x)$ by their representations, (2.1) can be writen out as

follows
$(m_{n1}x+ \cdot . . +m_{nn}x)n+$

$(c_{11}x)(m_{(-1}n)10+m_{(n-1)1}x+\cdots+m_{()()}-1n-1xn)n-1$ (2.2)
$+\cdots+(C_{n1}x+\cdots+c_{n}nXn)(m00)\equiv 0$

By equating the constant terms in the two sides of (2.2), we get

$=-m_{n0=}0$ . (2.3)

By equating the coefficients of $x$ in the two sides of (2.2), from(2.3), we get

$=-m_{n1}$ . (2.4)

Generally, for $\mathit{2}\leq k\leq n$ , by equating the coefficients of $x^{k}$ in the two sides of (2.2), we
get

$=-[m_{nk}+ \sum_{i1\leq\leq n}1\leq j\leq\min\{i,k\sum_{-\}}c1ijm_{(}$ )$(k-j)]n-in1-k+1$ , (2.5)

where, for a vector $u=,$ $[u]_{i}^{j}=$ .
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For $2\leq i\leq n$ , computation of $c_{ij}(i\leq j\leq n)$ need $(i-1)(n-i+1)^{2}$ multiplications
in $D$ and, computation of all $c_{ij}’ \mathrm{s}$ need

1 $\cdot(n-1)^{2}+\mathit{2}\cdot(n-2)^{2}+\cdots+(n-2)\cdot 2^{2}+(n-1)\cdot 1=\frac{n^{4}}{1\mathit{2}}-\frac{n^{2}}{1\mathit{2}}$ ,

Let $c_{i}= \sum_{j=1}^{i}c_{ij}$ , then $c(\lambda)=\lambda^{n}+c_{1}\lambda n-1+\cdots+c_{n}$ gives the characteristic polynomial

$\mathrm{o}\mathrm{f}A$ .
Totally, it needs $\frac{7}{12}n^{4}+O(n^{3})$ multiplications in D. ,

By above discussion, we can give the Cayley-Hamilton artificial constant matrix algo-
rithm, or, in abbreviation, CHACM algorithm, for computing characteristic polynomial
in Algorithm 2.1.

Algorithm 2.1 (CHACM algorithm)

Input: A square polynomial matrix $A$ .

Output: The characteristic polynomial of $A$ .

Step 1: $A=A-E$ .

Step 2: Computing $m_{ij}’ \mathrm{s}$ .

for $i=1$ to $n$ do

$m_{(i-1)0}=e_{i}$

end

$m_{n0}=0$

for $i=1$ to $n$ do

for $j=1$ to $i$ do
$mij=Em(i-1)j+Am(i-1)(j-1)$

end

end

Step 3: Computing $c_{ij}’ \mathrm{s}$ .

for $k=1$ to $n$ do

for $i=1$ to $n$ do
for $j=1$ to $\min\{i, k-1\}$ do

$[m_{nk}]_{1^{-k}}^{n}+1=[m_{nk}]_{1}^{n}-k+1+[m_{n}j]_{n-}i+1[m(n-i)(k-j)]_{1^{-k}}^{n}+1$

end
end

end

Step 4: Computing $c_{i}’ \mathrm{s}$ .
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for $i=1$ to $n$ do
$c_{i}=0$

for $j=1$ to $i$ do
$c_{i}=c_{i}-[m_{nj}]n-i+1$

end

end

Notice that, we can also compute the vectors

$m_{00}$

$m_{10},$ $m_{11}$

$m_{n0},$ $m_{n1},$ $\cdots,$ $m_{nn}$

column by column, and that if the first $j+1$ columns of vectors in above table have been
computed then $c_{jj},$ $\ldots,$ $c_{nj}$ can be computed from them. Once a new $c_{ij}$ is computed,
we can add the productions

$c_{ij}m_{(n-}i)k$ , $k=1,$ $\ldots,$
$\min\{j, n-i\}$

to $m_{n(j+k)}$ . And, once a new vector $m_{ij}$ is computed, we can add the products

$c(n-i)kmij$ , $k=1,$ $\ldots,$ $\min\{j-1, n-i\}$

to $m_{n(j+k)}$ too. As the result, when above procedure is finished, the first $n-k+1$
elements of $m_{nk}(k=1, \ldots, n)$ is $\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}-(c_{nk}, \ldots, ckk)^{\mathrm{T}}$ . By this observation, we give the
improved version of the CHACM algorithm, which compute $m_{ij}’ \mathrm{s}$ and $c_{ij}’ \mathrm{s}$ is one loop,
in Algorithm 2.2.

Algorithm 2.2 (Improved version of the CHACM algorithm)

Input: A square polynomial matrix $A$ .

Output: The characteristic polynomial of $A$ .

Step 1: $A=A-E$

Step 2: Computing $m_{ij}’ \mathrm{s}$ and $c_{ij}’ \mathrm{s}$ .

for $i=1$ to $n$ do

$m_{(i-1)}0=e_{i}$

end
$m_{n0}=0$

for $j=1$ to $n$ do

$m_{jj}=Am_{(j-1)}(j-1)$
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for $k=1$ to $\min\{n-j,j-1\}$ do
$[m_{n(j+k})]_{1^{-}}nj-k+1=[m_{n(j+k})]_{1^{-}}nj-k+1]_{j+}1[mjj]_{1}^{n}-+[m_{n}kj-k+1$

end
for $i=j+1$ to $n-1$ do

$m_{ij}=Em_{()}i-1j+Am(i-1)(j-1)$

for $k=1$ to $\min\{n-i,j-1\}$ do
$[m_{n(j+k})]_{1^{-}}nj-k+1=[m]^{n}1-n(j+k)+-k+1[jmnk]_{i+}1[mij]n-j-k+1$

end
end
$[m_{nj}]_{1^{-}}^{n}j+1=[m_{nj}]_{1}^{n}-j+1+[mj+nEm(n-1)j+Am_{(-1})(j-1)]n1n-j+1$

for $i=j$ to $n$ do
for $k=1$ to $\min\{n-i,j\}$ do

$[m_{n(j+k})]_{1^{-}}nj-k+1=[mn(j+k)]_{1^{-}}nj-k+1+[mnj]_{n-}i+1[m(n-i)k]_{1}^{n}-j-k+1$

end
end

end

Step 3: Computing $c_{i}’ \mathrm{s}$ .

for $i=1$ to $n$ do
$c_{i}=0$

for $j=1$ to $i$ do
$c_{i}=c_{i}-[mnj]n-i+1$

end

end

3 Computational tests
In this section, we give some computational results. The algorithms are programed

in Mathematica. The computational results show the correctness of our algorithms (at
the present stage, we have only programmed the Algorithm 2.1.) and compare the CPU-
time of our algorithms with that of Faddeev-Leverrier’s method and internal function
of Mathematica for computing the characteristic polynomial. We also compare our al-
gorithm with Danilevakii’s method (see [2]), of which a fraction-free modification has
been given by Moritsugu and Kuriyama in [6] (English translation, [7]) (test results in
[7] showed that for univariate polynomial matrices of dimension 3 to 20 the fraction-free
version can reduce the CPU-time by about 70% at most from the original Danilevskii’s
method).

Using Mathematica Ver. 3.0 on Pentium II $\mathit{2}33\mathrm{M}\mathrm{H}\mathrm{z},$ $128\mathrm{M}\mathrm{b}\mathrm{y}\mathrm{t}\mathrm{e}$ RAM, we have com-
puted the characteristic polynomial of some univariate polynomial matrices of degree 1,
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2 and 3 and various dimensions with randomly generated integer coefficients. The follow-
ing tables show the comparation of CPU-time by Algorithm 2.1 (CHACM), Faddeev-
Leverrier’s algorithm (F-L), the internal function of Mathematica (Int) and Danilevakii’s
method (Dani).

Table 1: CPU-Time (in second) for $d=1,$ $n=3$ to 10

Table 2: CPU-Time (in second) for $d=2,$ $n=3$ to 10

Table 3: CPU-Time (in second) for $d=3,$ $n=3$ to 10

Conclusion: A new Cayley-Hamilton theorem based method–CHACM has been
presented. Theoretical analysis and preliminary computational tests show that it is
efficient for computing characteristic polynomials of polynomial matrices.

Acknowlegement: Thank Professor S. Moritsugu for bringing the Danilevskii’s
method to our attention.
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