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Quantum double Schubert polynomials, quantum
Schubert polynomials and Vafa—Intriligator formula
(joint work with Anatol N. Kirillov)
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Introduction.

The cohomology ring of flag variety Fl,, of type A,_1 is isomorphic to the
quotient ring of the polynomial ring Z[zy,...,z,| by the ideal generated
by symmetric polynomials. It is well-known that the dual classes of the
Schubert cycles are represented by so-called Schubert polynomials in the
cohomology ring. On the other hand, physicists introduced another ring
structure on the cohomology group, which 1is called quantum cohomology
ring. The quantum cohomology ring of the flag variety also has a structure
of the quotient ring of the polynomial ring Z[z1, ..., z,] ([C],|GK]). In the
quantum cohomology ring of flag variety, the Schubert polynomials do not
represent the Schubert classes any more. Fomin, Gelfand and Postnikov

- [FGP] first introduced the quantum Schubert polynomials, which corre-
spond to the Schubert classes in the quantum cohomology ring. They gave
a commuting family of operators acting on the polynomial ring and the
quantization of polynomials. In this note, we define the quantum Schu-
bert polynomials based on the orthogonality of the Schubert classes with
respect to the intersection pairing. We also introduce the quantum double
Schubert polynomials and see that they satisfy an analogue of the Cauchy
formula. As applications of quantum Cauchy formula, we consider the

Vafa-Intriligator type formula and the quantization map. For details, see
Kirillov and Maeno [KM1].
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1 Cohomology ring of flag variety and Schubert polynomi;als.

First of all, we make a brief review of the Schubert polynomials. More
details are found in Macdonald [M]. Let 0 = Ey C E; C --- C E, =
C" ® O be the universal flag of subbundles over F = FI,,. Then the
cohomology ring H*(F, Z) is isomorphic to the quotient ring P, /I,,, where
P, =1Z[z,...,z,) and I, is the ideal generated by symmetric polynomials,

and the natural identification is given by
z; = ci(Ei/E;i—1), i=1,...,n.
Let us consider the natural sequence of quotient bundles
E,=L,—---—L; =0,
where L; = E,/E,_; on F. Now we fix a flag
O=WwWcCcwvc.--cV,=C"

Then we have induced morphisms fp, : V, ® Op = L, for 1 < p,q < n.

Definition 1.1. For a permutation w € S,, the Schubert cycle Q,, is the
locus where rank fpq < ry(q,p) for any 1 < p,q < n — 1, where r,(q,p) =
#{i |4 < ¢, w(i) < p}. »

It is easy to see that the dual class [Q,] € HZ®)(F,Z) where I(w) is the
length of w and that the Schubert cycles give an orthonormal basis of of

the cohomology group with respect to the intersection pairing, namely

<Qua Qv) - (Sv,wo'u,a

where wy € S, is the permutation of maximal length.
Next we consider the Schubert polynomials which represent the Schu-
bert classes in the cohomology ring. We introduce the divided difference

operators 0; ¢ = 1,...,n — 1 acting on the polynomial ring P, as follows:

(8,f)(:c) _ f((IJl,...,.’IJn) —f(a:l,...,m,-ﬂ,:ci,...a:n).

Li — Ti4l
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We choose a permutation w € S,, and its reduced decomposition
w:sal...sap’

where s; is a simple transposition (z,i+1) and p = I(w). Then the operator

Ow = 0a, "+ Oq

P

does not depend on the choice of reduced decomposition of w.

Definition 1.2(Lascoux and Schiitzenberger [LS1]). .
For each permutation w € Sy, the Schubert polynomial &,(x) is defined to
be

&u(2) = Our1uy(2°),
where 6 is a multi-indez (n —1,n —2,...,0).
It is known that &,(z) = Q, in H*(F,Z). Moreover, the intersection pair-
ing on H*(F,Z) is naturally identified with the induced pairing from the

residue pairing
(f’ g>In - R’eSIn(fg)a fag € Pna
where Res;, is the Grothendieck residue ([GH]). Hence, the Schubert poly-

nomials are orthonormal with respect to the pairing { , ). Conversely, the
orthogonality characterizes the Schubert polynomials.

Proposition 1.3. The Schubert polynomials are uniquely characterized by
the following properties. |

1. (6u, 6v) = Suugv-

2. &y(z) = <) 4+ s !,

where c(w) = (c1(w),...,ca(w)) is the code of w and multi-indices I =
(i1, ...,in) run over I C 8 (i.e0 < iy < n—k) and I degree-lexicographically
smaller than c(w).

Remarks. 1) (Definition of the code)([M], p.9).

For a permutation w € S,, we define

ci(w) =#{j | i <, w(i) > w(5)}-
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The sequence c(w) = (c1(w), ..., c,(w)) is called the code of w.
2) The Schubert polynomials are obtained as Gram-Schmidt’s orthogonal-

ization of the monomials (z7);cs ordered degree-lexicographically.

2 Quantum Schubert polynomials and quantum double Schu-

bert plynomials

Quantum cohomology ring is a deformed ring of the ordinary cohomology
ring and its structure constants are given by the Gromov-Witten invari-
ants. For general definition and properties of quantum cohomology ring,
see [KM2], [MS] and [RT]. Let us remind the structure of quantum coho-
mology ring of flag variety.

Theorem 2.1(Givental and Kim [GK], Ciocan-Fontanine [C]).
The quantum cohomology ring of flag variety F is generated by z; =
ci(Ei/Ei1),i=1,...,n, as a Z]q1,...,q._1]-algebra and |

QH*(F) 2 Zlzy,...,Tn,q1,- -, gui1]/In,

where the ideal I, is generated by the quantum elementary symmetric func-

tions €;(z) := e;(z|q), with generating function

Ap(t|z) ==
-1 332+t q2 O 0
n . 0 e e 0
> ei(z]|g)t’ = det .
1=1 . . . :
0 .. 0 -1 zp1+4t go
0 oo ... 0 -1 T, +1
We define a pairing on P, = Lz, ..., Tn,q1,-..,qn-1] With values in

Zlq1,...,qn-1] by

(.fa g)Q = RGSI*n(fg), fag € ZSn
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This pairing induces a nondegenerate pairing on QH *(F).

Definition 2.2([KM1], Definition 5).

We define the quantum Schubert polynomials &, as Gram-Schmidt’s or-
thogonalization of the classical Schubert polynomials &,, with respect to the
pairing {, Yo : '

1) {84, 64)Q = Svuwous

2) &y(z) = 2% + Trco(w) ar(q)z’,

where a;(q) € Z[g1, ..., qn-1] and I < c(w) means the degree-lexicographic

order.

Remarks. 1)This definition is the analogue of the characterization of
Schubert polynomials in Proposition 1.3.

2) The polynomials obtained by the Gram-Schmidt type orthogonalization
are, a priori, defined over the field of fractions of Zlq1, ... ,qn-1]. However,

it turns out that they are defined over Zgy, ... ,qn—1] from Theorem 3.1.
Next we introduce quantum double Schubert polynomials.

Definition 2.3([KM1], Definition 4). |

Letz = (x1,...,%0), ¥y = (¥1,---,Yn) be two sets of variables, put
n—1 '

= I Ai(yn—i | z1, .- -5 T0)
i=1 -

For each permutation w € Sy, the quantum double Schubert polynomaial is

defined to be
éw(xay) = 61%0@%(:6, y)?
where divided difference operator 81(1}/,2,0 acts on the y variables.

Remarks. 1) If we put g1 = --+ = go-1 = 0 in the quantum double

Schubert polynomial, we get the classical one, namely

éw(ma y) |q=0: Gw(ﬂf,y),

where the classical double Schubert polynomial &,(z,y) defined as follows
([LS2]):

Suo(z,y) = I (i +95),

i+j3<n
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Su(2,y) = 0,60, (2, y).

2) The quantum double Schubert polynomials are stable under the natural

embedding 7 : S, = S, form > n :
6w (T, Y) = Siw)(z,y).

3 Quantum Cauchy formula and its applications.

Theorem 3.1([KM1], Theorem 3). The following analogue of the Cauchy

formula holds for the quantum double Schubert polynomial:

Guy(2,y) = gq GN5w(5’3)€5wwo(y)'

For multi-index I = (41,...,4,) C 4, the elementary and the quantum

elementary polynomials er(z) and é;(x) are defined to be

n—1

er(z) = II e (21, s Zns),
k=1
n—1

ér(z) = II éi.(z1,. .., Tnp).
k=1

The theorem above is equivalent to that

(&r(2), 8u(2))q = (er(2), 8u(x)),

for any permutation w € S,. This means that €;(z) represents in the quan-
tum cohomology ring the same class that e;(z) represents in the classical

cohomology ring. We can prove this fact geometrically. The proof can be
found in [KM1], Section 7. |

Corollary 3.2. The quantum Schubert polynomial &,(z) can be calculated
by the formula

Su (@) = (0 Su(,9)) ly=0 -

In particular, the quantum Schubert polynomials are stable under the nat-

ural embedding S,, = S,,, m > n.
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Corollary 3.3. The quantum Schubert polynomial &,,(z) is obtained as

a product of quantum elementary symmetric polynomials

&uw,(7) = €1(z1)é2(z1, 22) -+ - En—1(Z1, - - -, Tn1).

For a polynomial f(z) € P,, we denote by [f(z)] the corresponding class
in QH*(F). The correlation function (of genus zero) is given by

(f(@) = [[f(2)]

This correlation function is a generating function of Gromov-Witten in-
variants of genus zero. By using genus g invariants instead of genus zero
invariants, we can define the correlation function of genus g, which is de-
noted by {f(z))4. For Gromov-Witten invariants of higher genus, see [KM2]
and [RT]. In order to calculate the higher genus correlation function, we
introduce a polynomial
C(z,y) = 3 &P (2)8l()
wESh

From Theorem 3.1, we have

Ct)(z, ) = (8@, 2), 801, 2),

Y Wo

where ( , ) is the classical pairing with respect to the variables 2. The
higher genus correlation functiton can be calculated by the following Vafa-

Intriligator type formula.

Theorem 3.4.([KM1], Theorem 10).
Let ®(z) = C%9(z,z). Then we have

(f(2))g = Res, (f(2)®(2)?).

As another application of the quantum Cauchy formula, we consider the
quantization map on the polynomial ring Pw. Let f(x) € Py, then we have
the interpolation formula

Fa)= % sulen)df(),

wesSm
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where S is the set of permutations whose codes have length less than or

equal to n. We define the quantization of a polynomial f(z) € Py, by

fl@)= ¥ &ulz,y)0Y f(y),

wES(n)
and obtain a linear map P, — P,. If we put Tptl = Tpyo = -+ = 0,
and ¢, = qny1 = --+ = 0, we have a quantization map P, — P,. This

quantization map preserves the pairings:

~

{(f:9)o={f,9)1.

for f,g € P,. Moreover, the quantization map maps the ideal I,, C P, into
the ideal fn cC P,. 4

Quantization map does not commute with the product, namely fg # f-§
in general. The difference E — f - g reflects the structure constants of the
quantum cohomology ring. If f is a linear form, the following quantum

Pieri formula gives an explicit result.

Theorem 3.5. Let t;; be a transposition of the integers ¢ and j. In the

quantum cohomology ring QH*(F),
(581 + e ka) : éw(x) = Z éwtij(w) + Z qidi+1 " %-}-s——léwtij (:B)a
(x) (x%)
where (%) ranges the integers i,j such that1 <i < k < j < n and l(wt;;) =
l(w)+ 1, and (**) ranges the integers i,j such that 1 <i <k < j <n and
2s = l(w) - l(wtij) +1> l(t”)
Remark. The quantum Pieri formula was first proved in [FGP]. For the

quantum Pieri formula for &,,(z,y) and equivariant quantum Pieri for-

mula, see also [KM1], Section 9.
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