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PRECIOUS SIEGEL MODULAR FORMS OF GENUS TWO

V. GRITSENKO

ABsTRACT. We give a review of the recent results concerning Siegel modular forms with
respect to the paramodular groups of genus 2 and their applications to Algebraic Geometry
and Physics. Some facts mentioned bellow have not been published before. .

§0. GENERAL SET UP

Let Lo, be an even integral lattice of signature (2, n). Let us consider the corresponding
orthogonal group O% (L2 ,) (“plus” denotes the subgroup of elements with the real spin
norm 1) and the homogeneous domain of type IV

Hf, 2 0%(Lan ®R)/Kmas = {Cw CP(L3n ®C) |w-w=0, w-@ > 0}

where K4 is the maximal compact subgroup of the orthogonal group. The pair

(Ot (L2,n ® R), Kinqz) is @ symmetric pair of BD type. The corresponding bounded sym-
metric domain having complex dimension n is a complex domain of type IV in the Cartan
classification. By ’H+ we denote a standard realization of O%(La n, ® R)/ Kppaz as a tube

domain (this is so-called the tube of future) in C™ (see f.e. [B2], [Od], [G3]).
For an arbitrary subgroup I' C O (L2 ) of finite index we may consider the d-graded
ring (d € N) of modular forms My (I") of weight dk with respect to I’

(d) F) @ mdk

Tt is well known that this ring defines the Satake compactification of the modular variety
Ar =T\ Hj,

More exactly
(S atake)

PI‘O_] @ mdk F))

k=0

Classical examples of modular varieties of type Ar are the moduli spaces of the polarized
K3, Enriques, Abelian and Kummer surfaces. In the case of polarized K3 surfaces we have
the moduli space of dimension 19 related with lattice

Lypn =Lo19=2U ®2Eg(—1)® < -2t >
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where U = ( _E) 1 _01 ) is the unimodular hyperbolic plane, Eg(—1) is the negative definite

unimodular lattice of rank 8 and < —2t > is one dimensional Z-lattice with quadratic form
(—2t) (the number 2t defines a polarization of K3 surface). For Enriques surfaces

Lont2=Lo1o 2 U ®U(2) ® Eg(—2)

(see f.e. [BPV]). The moduli spaces of (1, ¢)-polarized Abelian and corresponding Kummer
surfaces have dimension 3. They are related with the lattice

L2,3 =2Ud < -2t >

(see f.e. [vdG], [GH1]). We may formulate the following problem:

Problem A1l. To describe lattices Ly, and corresponding groups I' C O%(Ly,) such
that the graded ring mt&d)(r) is a polynomial ring over C and to find generators of this
ring.

More generally we may put

Problem A2. For a given lattice Ly, and a group I' C O+(L2’n) to write a system of
equations of the modular variety Ar in terms of generators of the ring Sﬁﬁd)(l“).

We would like to mention that a solution of these problems related with description of
the graded rings of type i)ﬁstd) (T') gives us not only good models of some classical moduli
spaces but defines the so-called arithmetic mirror symmetry for K3 surfaces (see [GN3])
and provides us with important invariants in the theory of root systems of different types
(of elliptic root systems, of hyperbolic roots systems and of root systems of type IV in the
sense of K.Saito). '

Problems Al and A2 are closely related with the following

Problem B. To construct automorphic forms with respect to the group I' C O% (L2 ) of
a small weight with a “simple” divisor.

One can reformulate this problem as a construction of first generators of the corre-
sponding graded rings. By a simple divisor we mean a union of divisors of Humbert type.
A Humbert divisor is a projection of a rational quadratic divisor defined by some vector
l € L3, of negative norm (L* is the lattice dual to L)

Hi=mr({3€ Hi, | (1) =0}),

where 7p :"HZ2 . — T \ HZM is the natural projection. The Humbert divisor H; is a
modular variety,of type (2) of dimension n — 1.

We call a meromorphic automorphic form F' € M, (I") Humbert modular form if its
divisor is a sum of Humbert divisors with some multiplicities '

diva, (F) = Z a; Hy,.
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Such form F is called reflective (resp. 2-reflective) if the reflection defined by I; belongs
to the integral orthogonal group O(Lay,)*t (resp. (l;,l;) = —2) for all . The reflective
modular forms are very important in many considerations. For example, they provide us
with automorphic corrections of hyperbolic Kac-Moody algebras (see [B1]-[B3], [GN1]-
[G6]).

A particular answer on Problem B formulated above is given by the lifting construction
proposed by the author in [G1]-[G3] (see also [G4] where the case of the paramodular
groups, i.e. n = 3, was considered). This construction gives us all modular forms of very
small weights, more exactly for the weights for which modular forms are defined by the
first Fourier—Jacobi coefficient.

The information about divisors of modular forms is given by the Borcherds construction
of the exponential lifting. In the present talk we shall concentrate ourselves mainly on the
case of the homogeneous domain of dimension 3, i.e. on the lattices on signature (2,3).
In our RIMS-preprints ([GN5]-[GN6]) we construct a theory of reflective and 2-reflective
forms in the case of the lattices of signature (2,3). As it was mentioned above this case
is connected with the theory of the moduli spaces of Abelian and Kummer surfaces (see
[G3] and [GH1]-[GH2]). The application of some reflective modular forms constructed in
[GN1] and [GN6] to the heterotic string theory were found by T. Kawai (see [Kal]-[Ka2]),
G.L. Cardoso, G. Curio and D. Luest (see [CCL], [Ca]), R. Dijkgraaf, E. Verlinde and H.
Verlinde (see [DVV]). See also the papers of J. Harvey and G. Moore [HM1]-[HM2].

The most part of the results presented bellow were obtained by the author together with
V. Nikulin and with K. Hulek during his stay at RIMS (09.1996-02.1997) and were pub-
lished in the RIMS-preprints [GN5]-[GN7] and [GH2|. Using this opportunity we express
our gratitude to Research Mathematical Institute of Kyoto University for hospitality. I
give my special thanks to all members of Algebraic Geometry Semlnars at RIMS for useful
and stimulating discussions.

§1. ARITHMETIC LIFTING
In case of the lattice Lo 3 = 2U® < —2t > of signature (2,3) the corresponding homo-
geneous domain Hy, , is isomorphic to the Siegel upper-half plane of genus 2

={Z="Z€ My(C), Z=X+1iY, Y >0}

The integral orthogonal group PO* (L2 3) is isomorphic to a normal extension of the so-
called paramodular group I';. The last group is conjugated to the integral symplectic group
of a skew-symmetric form with elementary divisors (1,t). It can be realized as the following

subgroup of Sp4(Q)

* Tk % *
* % t~ .
Iy = . tx € Sps(Q)| all x are integral

tx tx ix *

The quotient
Ag =T\ Hp
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is isomorphic to the coarse moduli space of abelian surfaces with a polarization of type
(1,1).

We denote by |, (k € Z/2) the standard slash operator on the space of functions on Hy:
(F|xM)(Z) :=det (CZ + D)™*F(M < Z >)

where

M= (é g) € Spo(R) and M < Z>=(AZ+ B)(CZ + D).

For a half-integral k¥ we choose one of the holomorphic square roots by the condition

\/det(Z/i) > 0 for Z =Y € H,.

Definition. A modular form of weight k (k € Z/2) with respect to 'y with a character
(or a multiplier system if k is a half-integer) x : I'; — C* is a holomorphic function on H,
which for arbitrary M € I'; satisfies the functional equation

F|¢M = x(M)F VM €T,

We denote the space of such modular (resp. cusp) forms by 9k (T, x) (DN (Ty, x) respec-
tively).

Here we admit a character of the paramodular group I'; in order to construct roots of
certain orders of modular forms with respect to I'y with trivial character. The classical
example is the Dedekind eta-function '

o) = JL0 =0 = S (3 )™ € (state)

n>1 n€eN

where 7 € Hy, ¢ = exp (2mi7),

. 1 if n=4+1mod12
(Z>: —1 if n=4+5mod12
0 if (n,12) #1

and v, : SLy(Z) — { ¥/1} is n-multiplier system. Then
A(r) = n(1)** = ¢ — 24q + 252¢° — 1472¢* + - - € M1p(SL2(Z))

is the first cusp form with respect to SLQ(Z) with trivial character.

All possible characters of the paramodular group I'; are described in [GH2]. In particular
we have
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Theorem about Commutator. (see [GH2, Theorem 2.1].) For any integer t > 1 let
t1 = (t,12) and ty = (2t,12). If '} is the commutator subgroup of the paramodular group
Ft, then

I‘t/I‘; = Z/t1 X Z/tQ.

Remark. The group I'; /T is isomorphic to the torsion Tor Pic(A;) of the Picard group of
the moduli stack A, of (1 t)-polarized abelian surfaces.

A modular form F' € 9 (T, x) can be considered as a root of some order d of a modular
form from Mgy (T';) where d is the order of x. From Theorem above follows that d|12 if k
is integer.

The classical example of modular forms with a non-trivial character of T'; = Sp4(Z) is
the product of all even Siegel theta-constants

Pap(Z) =Y exp ( ri(Z]l+ 2a] + 1bl)) (2] = Y12, (1.1)
l€z2 } ,
ie. i | | R
As(2) =27 [ 6ap(2) € Ms(T1,x2) (1.2)
tab=0(2) ‘

where x2 : Spa(Z) — {£1} ([Ty : T}] = Zy, thus x» is the unique non-trivial character
of I';.) The graded rings img)(szi(Z)) and mt&l)(sz;(Z)) where defined by Igusa (see
[Ig1]-[Ig2]). In particular

9)?5,2)(Sp4(Z)) = C[FEy, EG, Fio, F12]

is the polynomial ring in four variables, where E4 and Eg are the S p4(Z)-Eisenstein series
of weight 4 and 6, Fio = AZ and Fi, is the unique, up to a constant, cusp form of weight

12. Moreover 1 2
o )(Sp4(Z)) = o .)(5P4(Z))[F35]

where Fjs is the unique, up to a constant, Siegel cusp form of weight 35.

The modular forms of very small weights automatically belong to the set of generators
of the graded ring S)JTQ)(I‘t). In the above example the Eisenstein series E4 and Eg are the
first two Sp4(Z)-modular forms. Similar Eisenstein series can be defined for arbitrary I';.
The modular forms Fyg = A2 and F are the first two Sp4(Z)-cusp forms.

The cusp forms of the smallest possible weight can be constructed using a special proce-
dure, Arithmetic Lifting. The datum for this lifting is a Jacobi form ¢ r(7, 2) of integral
weight k and index R (R € N/2) together with a character of the full Jacobi group. We
define Jacobi forms as modular forms with respect to the maximal parabolic subgroup I'e
of Sp4(Z) =T'; which fixes a line, i.e.

* 0 * *x
Fw:{(:g::) ESp4(Z)}.
000 *

Let k£ and R be integral or half-integral.
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Definition. We call a holomorphic function ¢(7, z) on H; x C a Jacobi form of weight k
and index R with a multiplier system (or.a character) v : I'oc — C* if the function

&(Z) := ¢(r, 2) exp (2miRw), Z = (T z) € H,
satisfies the functional equation

&M < Z >) = v(M)det(CZ + D)*$(2) | for any M = (2 3) €lw

and ¢ has a Fourier expansion of type

$(r,z)= Y f(n,1)exp(2mi(nr +12))
n,l :
4Rn—1%2>0
where the summation is taken over n and ! from some free Z-modules depending on v.
The condition f(n,l) = 0 unless 4Rn — 12 > 0 is equivalent to the holomorphicity of ¢ at
infinity. The form ¢(r, 2) is called a Jacobi cusp form if f(n,l) = 0 unless 4Rn — 12 > 0.
We call the number 4Rn — I2 the norm of the index of the Fourier coefficient f(n,l). We
denote the finite dimensional space of such Jacobi forms ( resp. cusp forms) by Ji r(v)
(resp.J§ g(v)). If the function ¢ has a Fourier expansion of type

(1, 2) = Z f(n, 1) exp (2mi(nT + 12)),
n>0,!

then we call it a weak Jacobi form. The space Ji'p(v) of all such forms is again finite
dimensional.

Here we admit Jacobi forms of half-integral indices. This is the only difference between
the definition of the Jacobi forms given above and the definition of [EZ].

Many examples of Jacobi forms of half-integral index see in [GN6]. The oldest example
of such forms is the Jacobi triple product. The Jacobi theta-series is defined as

n— i n? —4
¥r,2) = Z (—1)Tlexp(m4n T+ minz) = Z (E) qm2/8 ,,,m/Z’

n=1mod?2 meEZ

where ¢ = exp (27i7), r = exp (2miz) and
(—4)_{:!:1 if m =41 mod 4
m) 0 ifm= 0mod?2.

This is a Jacobi form of weight 1/2 and index 1/2, i.e. an element of J ,%(vg’ X vg). The
multiplier system v3 X vy is induced by the SLy(Z)-multiplier system v, of the Dedekind

n-function and the 7f'ollowing character of the integral Heisenberg group
| v (D\ ks 6]) = (—1)MHREIER, (L3)
We recall the famous Jacobi triple product formula
(1, 2) = —g/5r 2 ] (1= ") (1 = g*r " )(1 = g"). (14)
n>1

The next theorem is proved in [GN6, Theorem 1.12] (compare with the main theorem

in [G4])
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Arithmetic Lifting Theorem. Let

o(r, 2) = E f(ND,1) exp (2mi(—=7 + 52:)) € J,gf‘_,;p(vfl'i/Q X v5r),
N=1modQ : Q
l=emod2

N>0,4NDt>1?

where Q =1, 2, 3, 4, 6 or 12, ¢ = 2R mod 2, the weight k is an integer. We assume for
simplicity that t = QR € N and fix p € (Z/QZ)*. Then the function

Lift,, (¢)(Z)
= > ( Z ak‘lvf,)(oa)f(NiV;[D, %)) exp (2m‘(—‘gr + gz + Mtw)),

N,M>0 a|(N,L,M)
N, M=pmodQ
L=emod?2

where o, € SLo(Z) such that o, = (“;1 2) mod Q, is a cusp form of weight kwith respect
to the paramodular group I'y with a character
xq : Tt — { Y1} of order Q induced by w9 % ve,.

If p = 1, then Lift(¢)(Z) = Lift1(¢)(Z) # 0 for ¢ # 0, i.e. we have an embedding of the
space Jiy " (v)) X vg) into the space of Siegel modular forms.

Remarks. 1. If QR is half-integral see Theorem 1.12 in [GN6].
2. For pu # 1 the lifting could be zero for non-vanishing Jacobi forms. An examples of
non-zero pu-lifting see (1.11) bellow.
3. The construction of the arithmetic lifting in the case of orthogonal groups of signature
(2,n) see in [G3]. Its variant with a “commutator” character is similar to the theorem
above. See also [G3] for the case of non-cusp Jacobi forms.

A-series of modular forms. We define bélow the Siegel cusp forms Aj, Az, As, Ay
(the index denotes the weight). Let

$5,1/2(7,2) = 0(1)°I(1,2),  ba,1pa(r,2) = n(r)?0(7,2),  P1,172(T,2) = n(7)O(r, 2).

Then using the arithmetic lifting with 1 = 1 we can define the following modular forms

A = Lift(¢5,1/2) € N5(C'1, x2),
Ag = Lift(¢g,1/2) € N2(T2, X4),
A = Lift(¢1,1/2) € M(T'1, Xe)-

Moreover the lifting construction gives us the following Fourier expansions

MAHED Y (_74) G\;) > (g>q"/6rl/25m/2E‘ﬁl(Fg,XG) (1.5)

M>1 n,m>0,l€Z al(n,l,m)
n,m=1mod6
dnm—312=M>
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and : ~ .
—4 —4
= - - n/4,1/2 2
w5 2 () 5 (D)eerenian o
N2>1 n,m>0,l€Z a|(n,l,m)
n,m=1mod4 :
2nm—12=N?

where
7 = (: Z) € Hz,_'e(z) =exp (27iz), g =e(7), T = €e(2), s = e(w). (1.7)

Hence all primitive (i.e. with primitive matrices N) Fourier coefficients a(NN) of the cusp
form A1(Z) of weight one are equal to +1 or 0 (compare with the Fourier expansion of
the Dedekind #n-function)! ,

According Igusa A2 is the first cusp form with respect to Sps(Z). One can prove (see
[G5] and [GH2]) that A% (resp. A$) is the first cusp form with respect to I'y (resp. I's)
with trivial character. The first I';-cusp form of an odd weight (with trivial character) is
the modular form of weight 11

An(Z) = Lift(n(1)29(r, 22)) € M (Ta). (18)

D-series. Let us consider the Jacobi form of weight 1/2 and index 3/2 with the multiplier
system v, X vy (see (1.3))

12 204 :
V3/2(7:2) = Z(H> q" T € Ty s (v x v,
neZ .
This is the so-called quintiple product
Day5(7,2) = qFirH [Ta+ '+ r A - )1 - ¢ 21— g%). (1.9)
n>1 .

Then we can define two cusp forms of weight one and two with elementary Fourier ‘:c‘ovefﬁ-
cients '

12 —4
_ . _ = /12,.1/2 .3m /2 0 2
2 X (Ml) 2 (a >qn reT € allus, vy x vn),
M2>1 n,m>0,l€Z al(n,l,m)
n,m=1mod12

2nm—12=M?
(compare with the quintiple product) and
DQ(Z) — Llft(773’l93/2) =

—4
Y 2 MF)F) 3 (e et <o)
N>1 n,m>0,l€Z al(n,l,m) a4
n,m=1mod6

dnm—I12=N?



45

The first cusp forms for the paramodular groups I's, I's, I'7, I'10- One can prove
that

19(7, az)19(7", bz) € qus” 2+b2)(vg X vH)

is a cusp Jacobi form of weight one. It gives us an infinite series of Siegel cusp forms of
weight one _ » o ,
Lift(9(r, az)d(r,bz)) € M1 (T2(a2452), vg X vg)

with a character of order 4. One can prove that
F{*9(2)" = Lift(9(r, 2)9(r, 22))* € Mu(T10)

is the I‘lo -cusp form of the mlmmal Welght with tr1v1a1 character
For the paramodular group I‘5 the ﬁrst cusp form with trivial character has Welght 5.
This is the lifting

FO(2) = Litt (n(r)*0(r, 2)°9(r,22)) € Ws(Ts).  (1.10)
For I'g the first cusp form is the product of two liftings =
Féﬁ)(Z) = Lift(n(r)5‘19(7', 22)) -Lift2~(77(7')519('r, 2z)) € Ng(Ts) (1.11)

where Lifto is 2-lifting of the theorem above.
For the group I'7 the first cusp form is the square of the lifting

F(2)? = Lift (9(r, 2)29(r, 22))? € Na(T7). (112

In the next section we show that all these modular forms have an infinite product
expansion. ‘ o

Some other interesting examples of the arithmetic liftings with non-trivial commutator
character see in [GN6] and [GH2)]. ’

Applications to Algebralc Geometry. At this point 1t is natural to discuss the geo-
metric implications of our results. Weight 3 cusp forms are closely related to canonical
differential forms on smooth models of the corresponding modular variety. If F' is a cusp
form of weight 3 with respect to a group I', then wp = F(Z)dZ is a holomorphic 3-form
on the space A% = (I'\ H)°, where ® means that we consider the threefold outside the
branch locus of the natural projection from Hy to Ar. A very useful extension theorem
due to E. Freitag implies that such a form can be extended to any smooth model of Ar.
To be more precise, let I' be an arbitrary subgroup of Sp4(R), which contains a principal
congruence subgroup I'1(q) C Sp4(Z) of some level g. We then have the following

Criterion. (Freitag) An element wp = F(Z)dZ € H 0(~ 9, Q3(AP)) can be extended to

a canonical differential form on a non-singular model Ar of a compactification of Ar if
and only if the differential form wr is square integrable.

Proof. See [F], Hilfsatz 3.2.1.
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It is well known that a I-invariant differential form wp = F(Z)dZ is square-integrable
if and only if F' is a cusp form of weight 3 with respect to the group I'. Thus we have the
following identity for the geometric genus of the variety Ap:

pg(Ar) = h*°(Ar) = dim¢ MN3(T). (1.14)

In [G1] cusp forms of weight 3 with respect to the paramodular group I'; with trivial
character were constructed for all ¢ except

t=1, 2,...,12, 14, 15, 16, 18, 20, 24, 30, 36. (1.15)
We call these polarizations exceptional. Thus we have

Non-Unirationality Theorem. A; is not unirational for all non-exceptional polariza-
tions.

Remark. A similar (but a little weaker) result is true in the case of moduli space of polarized
K3 surfaces (see [G3]). ' '
We also remark at this point that I';-cusp forms of weight 2 can be very useful when
one wants to prove that some modular threefolds are of general type (see [GS]). All these
facts explain our interest in Siegel cusp forms of small weight k& (k < 3).
One can formulate a standard conjecture:

Ay is unirational for all exceptional polarizations.

In [GH2] it was proved that the geometrical genus of 4; is zero for ¢ < 8 (see also [GP]).
Nevertheless as it was found in [GH2] the threefolds .A; have very natural modular coverings
of degree 2 or 3 with positive geometrical genus.

Definition. Let T be an arithmetic subgroup of Sp4(R). For any character yr : I' — C*
we define the threefold

A(xr) = ker(xr) \ Ha.
The covering A(xr) — Ar =T \ Hy is Galois with a finite abelian Galois group.
For example, A{°™ = T} \ Hy is the mazimal abelian covering of the moduli space A;

I'} is the commutator subgroup of I';).
t
The next theorem is a direct corollary of the Arithmetic Lifting Theorem.

Theorem on Abelian Modular Coverings. (see [GH2, Corollary 1.6].) Let ¢ be one
of the exceptional polarizations. ,
(1) Ift # 1, 2, 4, 5, 8, 16, then the modular double covering

Alxz) 25 A

of the moduli space A; of abelian surfaces with polarization of type (1,t) has
positive geometric genus, and in particular the Kodaira dimension of A(xz2) is not
negative. Moreover, for t = 12, 15, 18, 20, 30 and 36 the Kodaira dimension of the
corresponding A:(x) is positive.

(2) Ift =6, 12, 15, 18, 24, 30, 36, then the threefold A;(x3) 3 A; has positive geo-
metric genus.

(3) Ift = 8 or 16, then the covering A;(x4) i Ay has positive geometric genus.
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In particular all these modular varieties are not unirational.

Moreover we have the following corollary about maximal abelian coverlng of At (com-
pare with Theorem on Non-Unirationality of Ay above).

Theorem on Maximal Abelian Coverings. Let Acom be a smooth projective model
of the maximal abelian covering
Agem =T, \ Hy of Ay. Then .AC""1 has geometric genus 0 if and only ift =1, 2, 4 or 5.

Let us consider the particular case of polarization of type (1,3). The cube of the cusp
form A; (see example above) defines a canonical differential form on the double cover
As(x3) of Az where A} € N3(T's, x3) thus h3°(A3(x3)) > 1. In fact we have equality!
In [GH2] we found siz coverings of As with geometrical genus one. One can prove the
following result :

Threefolds with the Geometrical Genus One. Let A$™ =25 Az and A™ 24 A,
be two maximal abelian coverings. Then

h3,0(Agom) — 1, hS,O(Agom) =1

Remark. One can pfove that the threefolds Az and A7 are rational (see [G6])
We would like to put the following question

Question. How far are the threefolds A$*™ and A$°™ from Calabi-Yau?

§2. EXPONENTIAL OR BORCHERDS LIFTING

In this section we give another construction of modular forms, ezponential or Borcherds
lifting, which gives us modular forms with Humbert divisors. In the case of Spy the Hum-
bert divisors are classical Humbert surfaces. For our purpose it is more convenient to con-
sider Humbert surfaces as divisors of a double cover of the moduli space of (1,t)-polarized
Abelian surfaces A;. To define this covering we consider a double normal extension of the
paramodular group I'; ’

Vil 0001

0to00
F+=FtUFtVYt, V*t:_l_(l()OO).
00tO

The double quotient

Ay 25 AF =TH \H,
of A; can be interpreted as a moduli space of lattice-polarized K3 surfaces for arbitrary ¢
or as the moduli space of Kummer surfaces of (1,p)-polarized abelian surfaces for a prime

t = p (see [GH1, Theorem 1.5]).
Any Humbert surface in .A;" of discriminant D can be represented in the form

Hy®) =7 (|J 9°({Z € Ha|ar + bz + tw = 0}))
gery
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where a,b € Z, D = b — 4ta, b mod 2t and m; : Hy — A (see [vdG], [GH1]). Remark
that H +(b) depends only on +b mod 2¢.
The datum for the exponential lifting is a nearly—holomorphlc Jacobi form

$o,t(T,2) = anlq o ) (2.1)
n,l€Z ' o

of weight 0 and index ¢. Nearly holomorphic means that there exist a number m such that
A™(7)¢(r,2) is a weak Jacobi form. If we chose the minimal non-negative m with this
property then n > —m in the Fourier expansion (2.1). Bellow we use the notation (1.7).

Exponential Lifting Theorem. (see [GN6]) Assume that the Fourier coeﬁiaents of
Jacob1 form ¢o; from (2.1) are integral. Then the product

Exp-Lift(go,)(2) = Bs(2) = ¢*r%s¢ [[ (1- anlstm)ﬂ"m»l) @2
n,l,meZ
(n,l,m)>0
where . ,
4Zf(o l)) B=s lzlf(Ol C =32 10,
>0 l

and (n,l,m) > 0 means that if m > 0, then | and n are arbitrary integers, if m = 0,
thenn > 0 andl € Z orl < 0 if n = m = 0, defines a meromorphic modular form of
weight £ ( 9 with respect to [} with a character (or a multiplier system if the weight
is half- mtegral) induced by 1124‘4 x v#P. All divisors of Exp-Lift(¢o:)(Z) on A} are the
Humbert modular surfaces H D(b) of discriminant D = b? — 4ta with multiplicities

mpp = Z f(n?a,nb).
n>0
Moreover
By(Vi(2)) = (-1 )DB¢(Z) with D = Zol —n)f(n l)

n<0 -
leZ

where o1(n) = 3_,, d.

The infinite product expansion of the modular form A;(Z). We recall that there
exists the unique, up to a constant, weak Jacobi form of weight zero and index one

12,1\7, 2
¢0,1(T7 z) = ¢n&7_()24 )
where ¢12 1 is the unique Jacobi cusp form of weight 12 and index 1. There are several
formulae for Fourier coefficients of this Jacobi form. In [EZ] one can find a formula for
Fourier coefficients of ¢12,1 it in terms of Cohen’s numbers (values of special L-functions
at integral points). For a very convenient formula in terms of Hecke operators see [GNG,
(3.34)]). Using the theorem above for the function ¢g; we get the following result from
[GN1]:

=(r+10+7r"1) +q(10r=2 — 64r~ + 108 — 64r + 107%) + ¢%(...)

A5(Z) = (gqrs)'/? H (1- anlsm)fl(nm’l) € N5('1, x2)

n,l,meZ
(n,l,m)>0

where fi(n,l) are the Fourier coefficients of ¢¢ 1(7, 2).
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The products expression for A; and Aj. Let us define a weak Jacobi form

n>0,1

-1 (H(l + 'q'n—l,r)(l + dnr—l)(l _ q2n—'1r2)(1 _ q2ﬁ—lr—2)) R
n>1

=(r+2+7Y) +q(—4rt —4rF L 2rF 1+ 4) + 42(...)

-S> T (T,

Then‘ we have

Z (§>qn/6%l/2smn/2
a

m>0,lEZ al(n,lym)
n,m=1mod6
dnm—312=M?
:q%’r%s% H (1 qn t 3m)f3(nm ) E‘ﬁl(I‘3,X6)
n,l,meZ
(n,l1,m)>0

- To get a similar formula for Az we consider the following holomorphic Jacobi form of
weight 2

1 819(7, z) 93/2(7, 2)
¢2,2(T, z) = %( 92 193/2(732) T T 89, 92 I(, Z))
1 . —4 12 im._?_—i m+n
f 5 mZn:EZ(?)m - n)(;;) (7{> q € Jy 2(’0 X ldH)

Moreover the divisor of these modular forms is the irreducible Humbert surface Hj in the
corresponding moduli space

DiVAl(AE,(Z)) = Hl, DlVA;-(AQ(Z)) = Hl, DIVA;(Al(Z)) = H1
-One can show that these A-functions are discriminant of some moduli space of K3 surfaces

with a condition on the Picard lattice (see [GN3]).

The singular modular forms A;/,; and D;/;. Now we define two special singular
modular forms with respect to the full paramodular group I'y and I'sg. The first form is
one of the classical Siegel theta-constants. The “most odd” even theta-constant

o 1 o ihed 1 4\ [ =4\ 2,y |
@1,1(2) = 5 E exp (71'Z (Z[;:i_z_] + l1 + 12)) = —2- E (7) (—nT)q” /STnm/43m2/8,
l1,l€Z n,mEZ )

where Z[M] = *MZM, is a modular form with respect to the subgroup I's; C Spa(Z)
conjugated to the paramodular group I'y (see [GN6]). Our second example is a modular
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form of weight 1/2 with respect to the full paramodular group I'zg. Firstly we define a
Jacobi form

¥(r,32) ‘ I
bo,4(7, 2) = = Z fa(n,1)g"r
9(r, 2) n>0,l€Z
— H (1 + qm——l7~ + q2m'2r2)(1 + qm,r——l + q2mr—2) H (1 _ qn,,.3)(1 _ qn,’_—B)
m2>1 n=1,2mod3
n>1
=(r+14+r ) —qrt+rd—r+2—rt4r3 ) 143 .0) (2.10)

where all Fourier coefficients f4(n,!) of the weak Jacobi form are integral (in fact they are
Fourier coefficients of automorphic forms of weight —1/2). Moreover we get the following
identity for the exponential lifting of ¢ 4

1 —4\ [ -4\ 2 .
s} 2 () F)enen
n,meZ
q1/8'r1/251/2 H (1 _ qn,rls4m)f4(nm,l) c m)1/2(1‘4,x8)
(nal)m)>0

where g is a multiplier system of I'y of order 8 induced by the multiplier system vf) X vy
of the Jacobi group. The divisor of this theta-series is again H;

Div4,(A1/2(2)) = Hi.
To define the form D,/ we determine a Jacobi form

V3/2(7,52)  I(7,102)9(r, 2) )
90.36(7, 2) = = = fas(n, 1) g"r
0,36(7, 2) 793/2(7, z) ¥(r,52)0(r, 22) nZOz,:leZ 36(n, 1)
_ e [ LT L g - )
- 5 (14 qn=1r)(1 + gnr—1)(1 — g2n—1r2)(1 — g2n—1r=2)

=rt-rl4+1-r71 +r 4+ AT+ )+ BET 4L
+q" P+ )+ B+ )+
where we include in the last formula only summands ¢"r! with the negative norm 144n—12:

144-2 - 172 = —1,144 -5 — 272 = —9, 144 - 7 — 322 = —16, 144 - 8 — 342 = —4. Then one
can prove the following identity

1 12 12 2 2

1 Z /24, nm/2 3m?/2 _ 1/24,1/2 3/2 _n,l.36m\fas(nm,l

2 (n)(m)qn TS g s ” (1 —gtrts™m)Jesinm ),
m,n€Z (n,l,m)>0

The divisor of this modular form is more complicated, but this is still a reflective modular
form:

Div 4+ (D1 /2)) = Ha(2) + Hy(34) + Ho(27) + H16(32).

The example of modular forms given above give us some evidence for the following
conjecture
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Conjecture C. Let t > 1 be square free. Then the space My,in(I'}) of modular form
of the minimal weight with respect to the commutator subgroup I', of the paramodular
group I'; contains a Humbert modular form. In other words, we can choose a Humbert

: o . . . 1
modular form as a generator of the minimal weight of the graded ring o )(I‘g).

We can formulate the same conjecture for arbitrary ¢, but then we should admit modular
forms of half-integral weight. : :

Using considerations from the last section of [GH2] we can prove rather important
property of modular forms of type A. :

Uniqueness Theorem. The modular forms As, Ay, A1, Ay are the only Siegel mod-
ular forms with respect to I'j with the divisor equal exactly to H;y (with multiplicity
one).

The result about the divisor of modular forms of A-type gives us a particular answer
on Problems A and B formulated in §1. As corollary we get

Rationality Theorem K. The moduli space of Kummer surfaces associated with (1,2)-,
(1,3)- or (1,4)-polarized Abelian surfaces is rational.

Remark. For t = 2 this result was obtained by Freitag (see [F1]) and Ibukiyama (see [Ib])
by other methods.

Using Theorem on Exponential Lifting one can find divisor of the first cusp forms for
I's, I'g, I'7 and I';o from the example above. It gives us rationality of the corresponding
moduli spaces (see [G6]).

All modular forms constructed above are symmetric, i.e. invariant with respect to the
exterior involution V;. To prove rationality of the moduli space of Abelian surfaces we
should construct modular forms anti-invariant with respect to V;.

Anti-symmetric modular forms. Using the exponential lifting, one can construct anti-
invariant modular forms, i.e. forms satisfying F(V;(Z)) = —F(Z). For example for t =1
we have the anti-invariant form F(Z) = Azs(Z). This is so called Igusa modular forms.
In [GN4] we proposed a new construction of this form as a Hecke product of A5(Z).

Let us take the modular form As(Z) which has the divisor H; in A;. Using the system
of representatives T(p), we then get

[A5(2)]72) = H Ag(Bfe, 22kl zae) H As(25F2, 29, 223) A5 (221, 22, 2F2)

" a,b,cmod?2 amod 2

X A5(2z19 222,223) H A5(2Z1, —21 + 29, Z1—=oZaT2310 ——2z2+z +b).

bmod2
One can check that div 4, ([A5(Z)]T(2)) = 9H,; + H4. Thus
As(Z i
Ass(Z) = [——Z(?(—QTT;Q — Exp-Lift (do,1|(To(2) — 2)) € Mas(T1)

and
A | l (2) 2
35(Z) = q2r32 (q _ 8) (1 . anlsm)fl (4nm—1%)

n,l, meZ
(n,l,m)>0
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where f1(4n — %) = f1(n,l) are the Fourier coefficients of ¢ 1(7, z) and

By =saan +2( 5 ) -DA00) + D,

Remark that we cannot construct Ass(Z) as an arithmetic lifting of a holomorphic Jacobi
form. Nevertheless (3.29) gives us A35(Z ) as a finite Hecke product of the lifted form
As(Z).

A s1m1lar construction gives us the unique antl-symmetrlc modular forms for I's, '3 and
Iy of weight 12. The uniqueness will follow from the fact that these modular forms have
only the Humbert surface Hy(0) = {7 — tw = 0} as their divisor.

Let us consider the function g 4(7, z) = A(7) "L E1g,(r, z) where

A(r)=q A —qM* =q-24¢ +253¢° + ...
n>1 :

and FE12.(7, 2) is a Jacobi-Eisenstein series of Welght 12 and index ¢.

There exists a formula for Fourier coeflicients of Ej ; in terms of H. Cohen’s numbers
(see [EZ, §2]). One can find the table of the values of Fourier coefficients of E4 1(7, 2) and
Eg1(7, 2) in [EZ, §1]. Using the basic Jacobi forms ¢o 1, ¢o,2 and ¢o 3(7, 2) we define

Wo(r,2) = Alr) " Be1(,2)? = 203 1 + 21660,5(7, 2)
= Z (nl)qr =q¢ ' +2444q(...),
n>0,l€Z : :
Yo,3(T, 2) = A(T) T E4 1 (7, 2)° — 3¢0,3T0(2)(T, 2) — 180(250 3(7, 2)

= Y et =gt +24+(...).
n>0, €7

The Jacobi forms g, (p = 2, 3) contain the only type of Fourier coefficients with indices
of negative norm. This is ¢~! of norm —4p. Thus we can use both functions to produce
the exponential liftings ‘

¥Q(2) = Bxp-Lift(oz) =q  [] (1 - q"rls™™)=0mi) € m,(ry),
' n,l, meZ
(n,l,m)>0

U(2) = Bxp-Lift(og) =q ] (1 — g r's®)=md € myy(Iy).
n,l,meZ '
(n,l,m)>0

According to Theorem on Exponential lifting

Hg forp=2

vV, <z >)=-98(2) (p=2,3) and D”““P(\I’(p)) - { Hyp forp=3.

The Fourier-Jacobi expansion of \Il(p ) starts with coefficients

\I!%)(Z) = Aq12(7) — A12(7)%0 p(7, 2) exp (2mipw) + . ..
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Therefore the constructed modular forms \Il(lg)(Z) (p = 2, 3) are not cusp forms..

Remark. An expression for <I>§22) in terms of theta-constants was found recently in [IO]
If we do the same for t = 4, we get a Jacobi form we used to construct As35(Z). Let us
take the Jacobi form

¢0,1|(To(2) — 2)(r, 2z) =q¢ 1+ (r4 +704+ 7" +q(...).

Its exponential lifting is zero along two Humbert surfaces with discriminant 16. To delete

the second component, we consider the additional Jacobi-Eisenstein series which has the

constant term equals zero (such a series exists if the index contains a perfect square). For

t = 4 this Jacobi-Eisenstein series is the eight power of the Jacobi theta-series ¥(, z).
Using 9(r, 2)8, we define

Poa(T,2) = (¢0,1|(T0(2)v + 26))(T, 22) — A(T)—1E4(T)19(T, z)® — 8(¢0,4|(T0(3) + 4)) (1,2)

= Y amDgtrt =g+ 24 +4( )
- n>0,lez

Similarly to 1o 2 and ¥o,3 the Jacobi form )¢ 4 contains only the Fourier coefficients of type
g~! with index of negative norm. Taking its exponential lifting we obtain the I'y-modular
form of weight 12

¥ (2) = ExpLift(o)(2) = ¢ [[ (1 —a"r's*™)=0™D € Mia(Ty).
. n,l,meZ ‘ .
(n,l,m)>0

\Ilgé)(Z) is anti-invariant and Div 4, (\I!%)) = Hg(0).

The construction of the modular forms \Ii(lg) together with information about their di-
visor gives us ’

Rationality Theorem A. The moduli space of (1,2)-, (1,3)- or (1,4)-polarized Abelian
surfaces is rational.

Remark. In March, 1997, a new preprint of Ibukiyama and Onodera [IO] where the ratio-
nality of A2 was also proved by another method.

The pair of modular forms (As, Ass) and (Ag, \I!%)) were used in [Ka2] and in [CCL],
[C] to define mirror symmetry for heterotic and ITA strings.

Applications to Lorentzian Kac-Moody algebras. Almost all identities between
arithmetic and exponential liftings mentioned above give denominator formulae for Lorent-
zian Kac—Moody algebras (see [GN1] and specially [GN5]-[GN6] for more details). These
algebras are generalized Kac-Moody superalgebras. Bellow we give a correspondence be-
tween constructed modular forms and generalized Cartan matrices of hyperbolic type which
describe the set of real simple roots of the algebras under construction.
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We denote by M; = U(4t) & (2) (t € N/4) a hyperbolic lattice with the bases fa, fa, f—o
and with the Gram matrix

0 0 -4
0 2 0
-4 0 O

We denote an element nfy + lﬁ; + mf_g of this lattice (or of M; ® Q) by its coordinates
(n,l,m).
All our formulae have the form:

@(Z) = Z N(n’ l’ m)qpl +nrp2+lst(p3+m) _
(n,l,m)eM;

= Z e(w) Z (ew(P) +N(a)ew(p+a)) = gPrP2gtPs H (1- anlstm)f(nlm)

weWwW a€R++MﬂMt (n,l,m)>0

for some W, M, p = (p1,p2,p3) which we define below. The “exponent” e(™htm) .=
g"rts'™. The Weyl group W is a reflection subgroup W C W (M;) C O(M,), and M, is
a fundamental polyhedron of W in the hyperbolic space £(M;) defined by the hyperbolic
lattice M;. (From the automorphic point of view the Weyl group W is defined by the
modular property of the modular form .

The elements a together with coefficients N(a) at the left hand side of the denominator
formula form a multi-set of imaginary simple roots ;A of the constructed generalized
Kac-Moody algebra (one should take every a exactly |N(a)|-times in this multi-set). The
Zy-graduation of the superalgebra is defined by the sign of the Fourier coefficients N(a).

Then the Siegel modular forms are related with the following generalized Cartan ma-
trices, equivalently, hyperbolic root systems 4

1. The product of all even theta-constant As — the right triangle with vertices at infinity
(i.e the fundamental polygon of the Weyl group is a right triangle).

2 -2 -2
Apir=|-2 2 =2
—2 -2 2

2. The Igusa modular form Ags — a right triangle with two vertices at infinity.

2 -2 0
Ao=1|-2 2 -1
0 -1 2

This is the “simplest” hyperbolic Cartan matrix (see [FF]).
3. The form Ay — the right square with all vertices at infinity.

2 -2 —6 —2
2 2 -2 —¢
Air=1| o o 9 _o
-2 -6 -2 2
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4. The form A1 — the right hezagon with all vertices at infinity.

( 2 -2 -8 -16 -18 -14 -8 0
-2 2 0 -8 -14 -18 —-16 -8
-8 0 2 -2 -8 -16 -18 -14
Ag 11y = -16 -8 =2 2 0 -8 -—-14 -18
’ —-18 —-14 -8 0 2 -2 -8 -16
-14 -18 -16 -8 -2 2 0 -8
-8 —16 -18 -14 -8 0 2 =2
\ 0O -8 -14 -18 -16 -8 -2 2
See [GN5]-[GN6] for more information.
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