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Introduction

Let V and ¥ be an involutive submanifold and a lagrangian submanifold of
V—1T*R"™ respectively given as follows:

V = {(2;i€) € VIT*'RY & = -+ = §p_q = 0}, (1)

S = {(;i€) € Vi = 0. (2)

In [3], Grigis—Schapiré—Sj6strand obtained a result on the propagation of
micro-analyticity of solutions along ¥ for transversally elliptic operators P;
that is, the principal symbol o(P) of P satisfies

|0(P)(@,in)| ~ (1] + |za] - |m])¢  near 3, (3)

where £ is some positive integer and ' = (1, ...,p—1). On the other hand, by
using an elementary functorial construction of the sheaf 5%/ of small second
microfunctions, the first author Funakoshi proved in [2] the solvability of
those operators in the space of small second microfunctions as follows:

Theorem 1. Let P(x,0,) be a differential operator with real analytic coef-
ficcients defined at x = 0. We suppose that

lo(P)(z,in)| ~ (1" + |zn|® - [1a])®  near= (4)
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for some positive integers k,£. Then we have a sheaf isomorphism:
o P
CZ == C2 onm (D).

Here, 5‘2, is called the sheaf on T3V of small second microfunctions
along V', which satisfies the following exact sequence:

0 — A% — Crel|y — mCE — 0, | (5)

where 7 : T ’*Vf/ = T{'}V \ V — V is the canonical projection, V is the patial
complexification of V along each leaf of V', and

A} = Cyly =Cy, Oxlv (6)

is the sheaf on V of second analytic functions along V. Since any section
of A% has a unique continuation property along each leaf of V', Theorem 1
implies the above-mentioned result of Grigis-Schapira-Sjostrand. However,
to get a solvability result in microfunctions, Theorem 1 is not sufficient. We
need a solvability result in A%. Though we have a general result due to Bony
and Schapira [1] on solvability in Cy for non-micro-characteristic operators,
" our operators as in (4) do not fall in such a class of operators.

In this paper, we introduce some special class of differential operators
satisfying the property (4), which admit the solvability in A%|s = Cylx =
Cazn Oz’ |E- ‘
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- Our Main Results

Theorem 2. Let P(z,0,) be a holomorphic differential operator written in
the form: |

P(2,0.) = > Capd%(20,)". (7)
|| +B=m -

Here the C, g’s are complex constants satisfying

C'O,m ?é 0. (8)

Then, the morphism |
P:Cp, Oy — Cyp, Oy

is surjective on {x, = 0}.
As a direct corollary of Theorem 1 and Theorem 2, we have

Theorem 3.

Let P(z,0;) be a holomorphic differential operator written as in (7).
Suppose that

| D Cap@)* @)’ ~ (10| + lea)™ (9)

|| +B=m

for any real small vectors (n',x,). Then the morphism
P CRn - CR"
18 surjective on Y.

Indeed, condition (9) implies condition (8).
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A Sketch of Proof of Theorem 2

~ Any germ f of C., O, at (0,0;idz,) € ¥ is written as a boundary value

Y
LY

F(2' x, -+ 10) of a holomorphic function F'(z) in a domain
D, ={z € C% || < |za| <7 Imz, > 0}. (10)

Hence, our problem reduces to finding a holomorphic solution U of the fol-
lowing equation for any given F'(z) in a complex domain like D,

P(z,0,)U(z) = F(2). (11)

Step 1. Considering the Szegd kernel for a complex ball, we have a decom-
position of F'(z) for a sufficiently small r > 0:

{ F(w', zp)
('7'2 _ Z" . w/)n

dS(w'), (12)

F{z) = Const.

=

where z/-w' = Z?;ll 2z and dS is the surface element. Hence, it is sufficient

to solve (11) for any holomorphic function F' with continuous parameter w'
of the following form:

/ —/ / )

F=G& @, zp;w'), (13)

where G(p, z,;w') is a continuous function on
/ -1 i / >
{(p, zn,w') € Cx C x C" s |p| < r,|zn| < 7, Imz, > 0, |w'| =r} (14)

devending holomorphically on (p, z,). Therefore, equation (11) reduces to
the following one:

CO,m H(znazn — ¥j (wl>8p) : U(pa Zns w,) = G(p7 Zny wi)7 (15)
v =1

where {¢;(w');j = 1,...,m} are the m-solutions of the algebraic equation

> Copw®¢’ =0 (16)

o +B=m
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in ¢.

Step 2. By solving first order equations in (15) successively, we get the
final solution of (15). Hence, our problem is to solve the following first order
equation: - ‘
(znazn — Py (w/)ap)U(pa Zn; 'w,) = G(pa Zn; 'w,)' ; (17)

In fact, if ;(w’) # 0, we have a holomorphic solution of (17) of the form

1
pj(w’)

p 7
Up,zn;w') = — / G(s, 2, P9/ 0w ") ds. (18)
T(w’)

However this solution is not holomorphic in a domain like (14). To get a
solution defined in a domain like (14), we must decompose G as

G(p, zn;w') = G (p, 2n;w') + G_(p, 2p; ). (19)
Here, roughly speaking, G is holomorphic in
0 <argz, <m-+e
and G_ is holomorplic in
—€ < argz, <m
for some € > 0. Indeed taking 74 (w’) in the formula (18) as

Ti(w’))

0< FIm(———+=
(s

(20)

respectively, we can show that the corresponding solutions U4 are holomor-
phic in a domain like (14). The most difficult point of our problem is how
to treat the case ¢;(w') = 0. This is not an exceptional problem because for
almost all operators P the sets

{w e C" 5 |w'| =1,0;(w') =0 for some 5}

={w eC" Y| =1, Z Coow'® = 0}

la|=m
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are not void (but usually of real codimension > 1). To overcome this diffi-
culty, we use a good decomposition of G in (19) based on Hérmander’s solu-
tion with L? -growth order for a 0 -equation in the whole C. Before making
such a decomposition we choose a better defining function G(p, z,, : w’). That
is, by solving a Cousin problem on C x P! with parameter w’, we can choose
a better defining function G(p, 2z, : w'), which is holomorphic on

{peC;lp| <r}x{z, € P1;Imz, > 0or |z,| > r} (21)
satisfying
G(p,00;w') = 0. (22)
Here neglecting variables p,w’ we consider a holomorphic function

H(r) = G(p,e"; ') (23)

in 7 defined on
{r € C;0 < Im7 < 7}

with a growth order
|H(7)| < CeReT

as Rer goes to +00. Now we apply Hormander’s Theorem to the decompo-
sition of H.

Hormander’s Theorem.

Let (1) be a subharmonic function on C. Then for any measurable
function h(t) satisfying

| / /C Ih(r)[2e=#Mdu(r) < oo (24)

we have a weak solution f(1) of

o | -
5=/ (1) = h(r) (25)

satisfying

/ / |F(7)[2e=2(M=210807*+1) gy () < oo, (26)
C

The detailed proof will be published elsewhere.
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