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A Characterization of Min-Wise Independent Permutations Families

Y OSHINORI TAKEI* Tosurva Itonf

Abstract. A Min-Wise Independent Permutation Family is an efficient tool to estimate similarity of docu-
ments. We present a characterization of Exact MWIPF's by size uniformity, which represents certain symmetry
of the string representation of a family. Also, we present a general construction strategy which produce any
Exact MWIPF using this characterization.

1 Introduction

1.1 Background

The notion of Min-Wise Independency is recently defined, motivated by the need for efficient calcu-
lation of “Resemblance”[1], which is an effective criterion of similarlity of two documents. Min-Wise
Independency is a property defined for a family of permutations on [n] = {1,2,... ,n}. In the paper
[2], they presented definitions of various level of Min-Wise Independency with some construction of
permutation families. The most fundamental and tight class of Min-Wise Independency is:

Definition 1.1 (Exact MWIPF [2]). We say that F C S,, =(the set of all permutations on [n]) is
an Exact Min-Wise Independent Permutation Family if the following holds:

VX C[n)(X #¢), Vo € X [ Pr minn(X) = n(z)] =1/|X|| ], (L1)

where 7€y F means that 7 is chosen uniformly at random from F.

The rest of the paper focus on Exact Min-Wise Permutation Families and we shall omit the word
“Exact”. In the proof of [2] Theorem 6, they obtained more explicit condition:

Theorem 1.2 (equivalent condition [2]). A subset F' of Sy, is min-wise independent if and only if the
following holds: .

| VO <k <nVX Cn](|X]| =n—k)Vz e X V(1.2)
[ Pr [m(n)\ X) = {L,2,... .k} and n(z) =k +1] = 1/((n = k) ())) |

Lower and upper bounds of their size are:

Theorem 1.3 (lower bound of size [2], Theorem 1). For any integer n > 0, let C C S, be a family
of min-wise independent permutations. Then ||C|| is a multiple of lem(n,n — 1,...,2,1) and hence -
il = en—etm).

Theorem 1.4 (an optimal construction in the sense of size [6], Theorem 3.3). For any integer n >
0, there exists a family of min-wise independent permutations F C Sy such that ||F|| = lem(n,n —
1,...,2,1). ' |

1.2 Main Results

In Section 2, we reformulate the equivalent condition of Min-Wise Independency (Theorem 1.2) as size
uniformity, using a certain string representation of permutations. In Section 3, we use the character-
ization to generalize the construction of Theorem 1.4 to a strategy which produce various Min-Wise
Independent Permutation Families (Theorem 3.5), and show that the strategy is enough general to
produce any Min-Wise Independent Permutation Family (Theorem 3.6).
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1.3 Notations and Definitions

In this paper, MWIPF means Exact Min-Wise Permutation Family.
We interpret S,, as the set of strings:

Sp={r=(21,...,%5,...,zp) |z € [n], z; £ z; (i #5)} (1.3)

where, m = (21,... ,%,... ,Zn) represents the permutation m : [n] 3 z; +» i € [n]. We put Hyx :=
{H C [n]||H|| = k}, the collection of all size-k subsets of [n]. For each H € H, 1 and z € [n], define
subsets Li(H) and My(z) of S, as:

Lk(H) :={<.’I}1,...,zEk,...,@n)68n|{$1,...,$k}=H} ' (14)
My (z) := {(z1,... , Tk, ... ,Zn) € Sp |z = x}. _ (1.5)

Then a subset F of S, decomposes into sum of disjoint subsets:

F= 1 @on@)= 1 11 @050 M), (16)

HeMHn i HeHy k E€[n\H

We define the set of first-k substrings of S,
Snpi={m=(21,...,%4...,zx) i €], i #z; (#£7)} (0<k<n) (1.7)

and define the first-k substring oprators for 0 < k < £ < n:

<pi 1 Sn e DALy e s Thye e, Tg) > (T, T) € Sy (1.8)

2 Characterization of MWIPF by Size Uniformity

Using the above definitions, we obtain a reformulatlon of Theorem 1.2, which characterizes MWIPF
by certain symmetry of size of subsets in the string representatlon

Theorem 2.1. A subset F of S, is a MWIPF if and only if
1F O Lg(H) N M1 (O =11FIl/((n — k)(")) Jorall0 <k <n HeH,p{€n]\H (2.9)

Though it is merely a direct translation of Theorem 1.2, it gives an explicit goal when we try to
construct a MWIPF. So we shall emphasize this characteristic of MWIPFs, calling it size uniformity.

3 A General Construction of MWIPF
3.1 Informal Description of the Strategy

We sketch basic strategy of the general construction(see Figure 1). First, we start with the replicated
null strings C - (), where C is the cardinality of the set to produce. Then we iterate stages consist
of classifying and appending, as in the former construction [6], but allowing more general appending
rather than the cyclic appending. Here AP, [C] denotes a map which appends each element of [n]\ H

to each string of FZ nk- 10 Subsection 3.4 we will discuss what is admissible as APH £[C] to output a

MWIPF. Then we regard that for given constant n and C' (under the condition C’ is possible value
as cardinality of a MWIPF), when we fix a sequence of admissible subroutines (APZ [C’])O;Elc; "
get a construction of MWIPF . In Theorem 3.5, we shall show the strategy produces a MWIPF for
all combination of admissible appending maps.

Set theoretical notations F,G are too informal since they contain multlple elements. In what
follows, we reformulate each procedure to avoid confusion.
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Figure 1: General strategy

Initial: Let Fy 0 := .7-",?,0 :={C-()} (Replicating Procedure)
for k=0ton—-1do
Stage k: ‘
Classifying Procedure: Classify strings (z1,... ,z;) among Fpn x
by their contents as sets {z1,... ,Zg}, 1.
for each H € Hn r do :
Let FH ke = Fne N @l (Li(H)).

end
for each H € H,; do
Appendmg Procedure:

Let gn k+1 - APn k[C] (*7: )

end

Let Fp ki1 := UHE’Hn,k gﬁkﬂ‘
end
output 7, = Fp p.

3.2 Formulation of Replicating
For an arbitrary subset S of Sy, x, let 9U(S) denote the free Z-module generated by S:

M(S) :={x= ZJES a(o)o|a(o) € Z} (3.10)

When all of coefficents of an element x € M(S) are nonnegative, it is identified with a so-called
“multiset” and each coefficent a(o) represent multiplicity of o in x. If all of its coefficients are either
0 or 1, they represent the characteristic function of a “genuine” subset of S. To represent these -
- situations, we define subsets of M(Sy, k) for p,q € Z,

MULT[p,q], :={x=)_ _ a(o)ola(o) € Z,p< a(o) < g}, (3.11)

0ESL &

then MULT[0, cc],! (MULT[0,1],) represents the collection of all multisets over S, (resp. genuine
subsets of Sy, k).

In these cases the sum of all coefficients coincides with the cardiality of its (multi)set interpretation.
So we define the weight of an element of M(S, ) as:

wy( z a(o)o) = Z a(o) | (3.12)

Uesn,k Uesn,k

The substring operator cpf; induces the linear map:

B MSny) ' TSy k)
) NV}
(3.13)
> obnr o= Y bkt = X ( ) b(T))U
TESp TESn, ¢ 0ESnk \Tipf(7)=0

for0<k<{4<n. Obviously @i preserves weight:

we(x) = wi(TE(x)) (% € M(Spye)) (3.14)

'In this case, the inequality on a(c) is should be read as 0 < a(co) < oco.
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3.3 Formulation of Classifying
The direct decompsition formula (1.6) is extended to (S, x):

MSnp) = P Mer @)= P P Mo (Le(H) N Mysa(E))). (3.15)

HeMtp HeMnp i, E€[n)\H

We define the projections:
U MSng) MR (L))

S ae)e =Y al)e. (3.16)

TES, UE¢Z(L1¢(H))

and
R m(sgjkﬂ) - wt(wzH(Lk(anMkH(a))

> alo)o — > a(o)a,
0ESn k+1 UESOZ+1'(LIc(H)an+1 €)

(3.17)

respectively. Taking the projection \I’fc{ is exactly “classifying” in this setting. To represent the notion
of size uniformity, we add some more definitions. For C € Z > 0 and each 0 < k < n, HeH
§ € [n]\ H, define subsets of MM(S, x+1) as:

n,ks

UNIF[CT, = {x € M(Snpr1) | wir (B (%)) = C/((n — K) (1))} (3.18)

Then put ' ‘
UNIF[C],,, = (‘]HEHW ﬂgew\H UNIF[C]S, (3.19)
UNIF[Cle, = ()., (@5 (UNIFC],), (3.20)

respectively. Here we put UNIF[C], := {C - ()}.
Using these settings, we obtain a reformulation of Theorem 2.1.

Proposition 3.1. Anx € M(S,) represent a MWIPF without multiple elements of size C' if and only
if x € MULT[0,1],, N UNIF[C],,.

3.4 Formulation of Appending
An “Appending” is a corresponding rule from inputs x = Zaego;;(Lk(H)) a(o)o € M(pp(Lr(H))) to

outputs y = ZT€¢2+1(Lk(H)) b(r)T € M(}(Lx(H))) such that &5 (y) = x. But we are interested

in rules only those which are admissible as processes to produce MWIPF. They need not care about
inputs violating uniformity of ealier stages, while they should guarantee that their outputs satisfy size
uniformity with respect to this stage. This leads us to the following definition of classes of maps:

Definition 3.2 (AP[C]}).
AP[CIE = { AP} : T (UNIF[C] ¢, N MULTIO, 00],,) — M}, (Li(H)))

APkH(EaEwZ(Lk(H)) a(0)o) =Y cepmpur  bla,0,8)(0t),
: o ¢k (L (H)) (3.21)
(1) Vé. € [n] \vaq € ()O’l;(Lk(H)) [b(a,a, 5) € ZZO]:

(i) Ve € [n] \ H [Emz(mg» b(a,0,€) = C/((n — k) (Z))] ,

(ii) Yo € R (Le(H) [Ceeapr 2(@,0,€) = a(0)] }
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Figure 2: CycleAp[C]¥

o1 0
a(al){ ’ o1 gl T
o1 2
én—k—-l C’/ (Z)
€o
'O'n! —k)! f —k—2
a(Un!/(n—k)!){ gn!igz_k;! € k1 !

By definitions (3.11),(3.18) and (3.13) the above conditions (i),(ii) and (iii) are equivalent to:
(i) < (a): APH(x) € MULTI[0, 0], 41y
(i) < (b): 1/),€I+£1(APH( )) € UNIF[C]k+1 for all ¢ € [n]\ H, (3.22)
(i) < (c): ®F(APHE(x)) =x.

In addition, we define the followmg subclass to exclude rules those which produce “MWIPF with
multiple elements”:

Definition 3.3 (RAP[C]]).

RAP[C) .= {A € AP[C]} | A satisfies (i),(ii),(iii) and
(iv) [x € MULT[0, (n — k)!], => A(x) € MULT[0, (n — k — 1)!];44]}  (3.23)

Example 3.4 (CycleAp[ 1#). For all 0 < k < n and H € Hp, the following map CycleAp[C]H L 18
an element of RAP[C]H¥ when C € Zs, is divisible by (n — k) (7).

Description of CycleAp[C]H 7. Fix a numbering of ¢} (Lx(H)) and a numbering of [n]\ H respectively;
O Lk(H)) = {01, 0k} and [W]\ H = {&, ... {n—k~1} (numbering from 0 of the later set for
convenience). For the input x = o7 (L () a(o)o list each of o; with multiplicity a(o;) (possibly

zero) in a column. By the assumption that input x is in ¥ (UNIF[C]¢) C TH(UNIF[C],), the number
of rows is 32, a(o3) = we(x) = X pem wr(p P (X)) =k - C/((n — (k— 1)) (")) = C/ ()

Then create the second column by the cyclic sequence &o,&1, ... ,&n—k-1, fg, £1,- .., 1.e., fill the rth
row of the second column by {( mod (n—k)) (Figure 2). Note that the cycle &,... ,§n_k_1 repeats

exactly C/((n —%)(})) times and ends with &, -1, since the number of row C/ (3) is divisible by
the period n — k. For each of o; and &;, set the occurence of pair 0;,§; to b(a, 0i,&;), and set

Y = 2ecin) \H o€} (L (H)) b(a, o, €){c€) to the output AP (x). Then it is easy to see that CycleAp[C]
€ RAP[C)Y. A O

3.5 * The General Construction

Now we are ready to describe the general strategy to produce multiplicty-free MWIPFs of specific
size:

Theorem 3.5. Let n > 0 be an integer and let 0 < C < n! be an integer which is a multzple

of lem(n,n — ,1). Fiz a sequence of appending maps (APH € RAP[C); )2;:;" . Define the
sequence (xx € im( Snk))g=p 98 follows: o

(1): xo:=C-()

@ x= Y APH(EH(x) (0<k<n) (3.2

HeHn
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then, x; € UNIF[C], N MULT[O, (n — k)], for all (0 < k < n). Especially, X, is an element of
MULTI[0,1],, N UNIF[C]Sn, i.e., Xn, represent an Ezact MWIPF of size C without multiple elements.

Proof. Note that C/((n—k)(})) € Z for all k (cf. [6] Lemma 3.1 or [2] Theorem 6). If x4, € UNIF[C] N
MULT(0, (n — k)!];,, then it is easily checked that x441 € UNIF[C],,; NMULTIO, (n — (k +1))!],,; by
the definition of RAP[C]E. m

3.6 Completeness of the Construction

Indeed, the strategy produce any MWIPF under suitable conmbination of appending maps.

Theorem 3.6. Let n be a positive integer and let C > 0 be a multiple of lem(n,n — 1,...,1). If
y € M(S,) represents a MWIPF without multiple elements of size C, then there ezist a sequence. of
appending map (APf € RA’P[C],?)?:;:’“ such that:

if we define xi € M(Spx)(0 < k < n) as in Theorem 3.5, then x, =y.

Proof. For each k and H, define

> i) ifz=T{ 0 k(y) |
AP (z) = { te[n\H (3.25)
CycleAp[C]kH (z)  otherwise.
and check that AP# € RAP[C]Y. Then check x; = &% (y) inductively. ' O

4 Concluding Remarks

In this paper, we reformulated a characterization of MWIPF as size uniformity, then presented a
strategy to produce subsets of S,,, which conform the output set to size uniformity. The strategy gives
a construction of MWIPF when one fix a choise of appending maps. On the other hand, by suitable
choise of appending maps, it produce any MWIPF. Thus the strategy is a surjection from the set of all
combination of appending maps to the set of all MWIPFs. This means that we may understand that
characteristic of a MWIPF is consist of local one (characteristic of each appending map) and global
one (combination of appending maps).

For practical apprications such as estimating document similarity, smaller family size and effecient
sampling are more desiable than exactness of Min-Wise Independency. In [2], they presented a number
of possible relaxized versions of MWIPF (k-restricted, approximated, biased distribution, etc.) for
this purpose. Indyk [4] presented a construction strategy of approximately Min-Wise Independent
Permutation Families based on families of hash-functions , which is useful for the derandomization of
the RNC algorithm [3]. Then it would be a problem: “For these relaxied versions of MWIPFs, are
there analogs of the generic construction strategy?”
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