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Embeddings of discrete series into some

induced representations of a group of G5 type

BORHE EHAME (Tetsumi Yoshinaga)

Introduction

Let G be a connected semisimple Lie group with finite center, K a max-
imal compact subgroup of G, 6 the corresponding Cartan involution. We
assume rank G = rank K in order to assure the existence of the discrete series
representations of G. In this case, the discrete series representations of G are
considered to be fundamental and studied for a long time. Harish-Chandra’s

 classical work [1, Theorems 13, 16] gives a parametrization of discrete series.
The discrete series of G are parametrized by regular, K-integral linear forms
A on the complexification of a compact Cartan subalgebra of gy = Lie(G).

This parameter A is called the Harish-Chandra parameter and we denote
by 7, the discrete series with Harish-Chandra parameter A. Then 7, L T,
if and only if A; and A, are conjugate under the action of the compact
Weyl group of G. The method in [1] was based on the theory of character
representations and his parametrization is quite an abstract one and did not
give concrete realizations of discrete series.

Historically speaking, the discrete series representations appered as a sub-
representaton of the regular representation of G. But these realizations are
not easy to use in investigations. So, other realizations of discrete series

“are given by R. Hotta and R. Parthsarathy [2], W. Schmid [5] and others.
Let (7,,V)) be the lowest K-type of the disrete series m,. Then we intro- -
duce a function space Cﬁ:(G), the totality of the functions with the property
fkg) = 75(k)f(g) for g € G and k € K. Schmid intoduced a K-equivariant



differential operator Dy on C?°(G) and showed in [5] that the discrete series
7, can be realized as the Lo-kernel of Dy. T his fact is also shown by Hotta
and Parthasarathy and a simplified proof was given.

Since this kind of differential operators give the realizations of discrete
series, such operators also leads us to find out embeddings of discrete series
into other induced representations. By means of Szego kernel, A. W. Knapp
and N. R. Wallach gave explicit realizations for discrete series as a quotient of
certain principal series in [3]. Taking contragredient representations, we find
out that this expression as quotient also gives embeddings of discrete series
into principal series, because the contragredient representation of a discrete
series is a discrete series.

For embeddings of discrete series, W. B. Silva determined, in [6], the
embeddings into principal series for groups of real rank one. Her method

based on the realization given by Knapp and Wallach, and closely related to

our method. But the case of the groups of higher real rank, difficulties in |

computation prevents us form complete determination of embeddings.

Using a modification of the operator Dy above, H. Yamashita established,
in [7], a general method to find out the embeddings of discrete series into
various kind of induced representations as (g, K)-modules, where g is the
complexified Lie algebra of G. In the case of embeddings into generalized
principal series, his result, Theorem 2.2, says that the dimension of the space
of (g, K)-module homomorphism can be determined through the (I, Kp)-
module structure of the solution space of the differential equation Dy f = 0.
Here, [ is the complexified Lie algebra of a Levi part L of a given parabolic
subgroup and Ky = K N L. This method is successfully applied to the case
of SU(2,2) in [7, 8]. _

But, since there are few results on exceptional groups, the author tried to
observe the case of groups of type G>. We have determind the embeddings
of discrete series into principal series for the case of a group of (3 type in
[9]. In that paper, embeddings into generalized principal series associated to
maxmal parabolic subgroups are left to be determined. So, in this article,
we give the embeddings into generalized principal series induced from one of

the maximal parabolic subgroups of a group of type Gb.
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- This article consists of three sections. In the first section, we describe the
structure of the Lie algebra, of a maximal compact subgroup and of parabolic
subgroups for a group of ‘type (9. In the succeeding section, we discuss on
discrete series. Their parametrization and embeddings into principal series
induced from one of the maximal parabolic subgroup are described. We
also explain the methods for determination of embeddings, including the
definition of the operator D) above. In the last section,

Our main result in this article is given as follows:

- Theorem The discrete series m, can be embedded into Ind% (€®1y,), if and
only if £ is one of the following representations.
If A is A} -dominant, then £ ~ ai,le) ® Xs-1, g, ® X(s-r-2)/2, Where € =
(_1)(3—7’)/2‘
IfA s A};—dominant, then £ ~ ?((%\) ® X(,;_s_g) /2
If A is Af;-dominant, then ¢ ~ 'ir‘,(zlk) ® X(r—s-4)/2-
In the above descriptions, ay = (r + 3s)/2 = (\,2a; + a,). For the
definitions of'ﬁ,(cl), r or s see §2.1.

1. Structure of a simple Lie group of type‘ Gy

1.1. Structure of G, type Lie algebra

Let g be a complex simple Lie algebra of type Ga, gy a normal real form of
g, 9o = £y po a Cartan decomposition of gy, and @ the corresponding Cartan
involution. Here, ¥ = {X € go|0X = X}, po = {X € go|6X = —X}. We
denote the complexifications of EO-, po etc. by &, p etc., omitting the subscripts.
Since ¥y = su(2) @ su(2), rank g = rank £ = 2, and we can take a compact
Cartan subalgebra ty C ¥ of gg. |

We denote the root system of g relative to t by A, and a positive éystem
of A and the Weyl group of A are denoted by At and W respectively. Then,

A ={tay, kay, (g + ay), £(20; + o), £(Bay + ap), £(3e; +2a,)} .
Here, two roots oy and a, saﬁsfy the following relations:

1
|a2_|2 = 3'“112 =

4’ (alaO‘é) =-1, <a2v.ai> = -3,
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where o is a coroot for a in A. The system of compact (resp. non-compact)
roots is denoted by A, (resp. A,) and put A} = ATN A, Af = AT NA,.
We may assume that A7 = {a;, 304 + 20, }.

Let B(-,-) be the Killing form of g and X the complex conjugate of
X € ¢ relative to the compact real form ¥ @ V—1pg of g. We equip g
with an inner product (-,-) defined by (X,Y) = —B(X,Y). Consider the
root space decomposition g = t & > 8a, Where g = {X € g | [H,
X] = a(H)X (VH € t)}. Then there exists an element E, of g, for each root
a such that y
B(Es, E_g) = I—fl—z E_o=~FE,, (1.1)
and we define H, € t by H, = [E,, E_,]. Moreover, we can take E,’s in the
following way:

[E10, Eo1) = En, (1.2)
[E10, En] = 2By, (1.3)
[Er0, E21] = 3E31, (1.4)
[E32, E_3.-1] = Ep1 . (1.5)

Here, E;; stands for Ejq, 4ja,, and Ej;'s are uniquely determined under rela-
tions (1.1)—(1.5) above when Ejo and FEy; are given.

From now on, E;;’s are assumed to satisfy relations (1.1)—(1.5), and define
ﬁl, [;’2 and ag by
" Hy=Ep+Ep 1,
Hy=Eyn+E 54,
g = ]Rf‘jl + RI‘}Q .

o O : non-compact root
1
@ : compact root

Figure 1: The root system A
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Then we see that ay is a maximal abelian subspace of py.We equip af with
the lexicographic order with respect to the ordered basis (ﬁl, ﬁg) of ag. We
denote the system of restricted roots of gy relative to ay by ¥ and the positive
system of ¥ by ¥*. Then,

Ut = {vy, vy, vy + 14, 2u1 + 12, 3vy + 1, 311 + 20} .
Here, v; and v, are linear forms on a defined through the conditions:
Ul(ﬁl) = 0, Vl(ﬁz) = 2, Vg(.ﬁl) = 1, Vz(ﬁg) = —~3 .

Using this ¥*, we define a subspace ng of go by ng = D ,cq+(80)a, Where
(go)r = {X € g0 | [H,X] = MH)X (VH € a9)}. Then we have an Iwasawa
decomposition gy = £ D gy D ng of go.

Now define an automorphism u of g by
i T
U= (exp 1 ad(Eo; — EO,_l)) (exp 1 ad(Eq — E_27_1)) .

Then v maps t onto a, and two root systems A and ¥ are related as vy ou =
—(204 + a,) and v 0u = 30, + . Using this automorphism u, define a root

Véctor Zij € Givy4juy DY

Zip=u(E_o_4), Zoy = u(F31),
Z11 = u(Ey), Zoy =u(B_1-1),
Zy = u(E_3_2), Zs2 =u(Ep_1).

Note that Zy; and Zs; are elements of gy and Zig, Z11, Z31 and Zsp are in

Vv '—lgg

1.2. Structure of the group G and its maximal Compact subgroup

Let G¢ be a connected, simply connected simple Lie group with Lie al-
gebra g, G the analytic subgroup of G¢ with Lie algebra gy. The Iwasawa
decomposition of G corresponding to that of gy is denoted by G = K AN,
- We know that K ~ (SU(2) x SU(2))/D with D = {1, (—12,—15)}. Here
15 is the unit matrix of degree 2. For each element k € SU(2) x SU(2), the
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image of k under the covering homomorphism of SU(2) x SU(2) onto K is
denoted by k*
Put M = {m € K | Ad(m)|s, = idq,}, then we obtain, by a straightfor-

ward calculation, that M = {1, my, ma, mimg } with m; and my € K given

= (5m). (F4))

({0 =1} (0 —1\}}

m o= (0 9),079))

Therefore M is generated by two elements m; and my with m} = mj3 = 1,
mime = Moy, and M ~ Z/QZ X Z/2Z

1.3. Structure of maximal parabolic subgroups of G

Here we are going to describe the structure of parabolic subgroups of
G. Let U, be the simple system of U+, that is, ¥, = {11, v2}. Then,
for each maximal proper subset S of ¥, there is a corresponding maximal
parabolic subgroup Ps and any maximal parabolic subgroup of  is conjugate
to one of these Pg’s. For simplicity, we denote Py} and Py,) by P and P,
respectively. The Langlangs decomposition of P; is denoted by P; = M; A;N;
and let m;, a; and n; be Lie algebras of M;, A; and N; respectively. The
identity component of M; is written by (M;)o.

. Structure of P

The Lie algebras a;, m; and ny are given by
a = Rﬁ 1, :
my = (gO)m @ Rﬁ2 D (90)~;/1 3
13 = (90)u, © (80)ws+v, ® (80)2v1+v2 D (80)3v1422 D (80)301+205 -

The subalgebra m; is isomorphic to sl(2,R) and and we have (v/—1Zxo, H,,

—v/=10Z1) as its sly-triplet. Put Fy = {1, my} C M, then My = F1(Mi)o

and the action of my € Fy on (M), is as follows:

(My)o ~ SL(2,R) 3 & +— JeJ ' € SL(2,R).
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Here, J = (3 _01) and we identify Mo with SL(2,R) through the identifi-
cation of the above sly-triplet with the canonical sly-triplet ( (g é) ,(é «01)'
(1 9)) of sl(2,R).
- Structure of P,

The Lie algebras my, ag and ny are given by

g = R(Bﬁl + FIZ) )
M2 = (o), & R(Hy — Ha) ® (80)-s, »
Ny = (go)vl @ (90)V1+V2 D (90)21'1-1-1/2 ® (90)31/1—{—1/2 D (90)3u1+2u2 .

The subalgebra m; is also isomorphic to s[(2,R) and we can take (Zy;,
(Hy— Hy)/2,—02y) as its sly-triplet. Put Fy = {1, mi} C M, then M, =
Fy(Ms)o and M, is isomorphic to M;.

2. Discrete series of G and their‘embeddings

2.1. Finite-dimensional irreducible K-modules and M;-modules

. Irreducible K-modules

Let A be a Af-dominant, integral linear form on t and (7,,V)) a finite-
dimensional irreducible representation of ¢ with highest weight A\. Then, as
£-modules,

V) V;-®Vs for r= )\(Hlo), § = )\(H32):
p (V@)

Here, Vj is the (d + 1)-dimensional irreducible SU(2)-module. Let {el |

p=—d,~d+2,...,d— 2,d} be an orthonormal basis of V; consisting of

weight vectors, where e,(od) is a weight vector for weight p. Then we have an

orthonormal basis {e,(,’") ® el |p=—r,—r+2,...,r;¢=—s,—5+2,... s}

for V; ® V. For simplicity, we write e for e ® e,
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- Irreducible M;-modules

Next, we prepare some notation for irreducible M;-modules. Two groups
M; and M, are isomorphic to F X SL(2,R), where F ~ 7 /2Z. Here we
identify F' with the subgroup Fi or F; given in the previous subsection.
If we denote the generator of F' by a, then for an element g of SL(2,R),
aga™t = JgJ ™ € SL(2,R), with T = (§ ).

For each non-negative integer n, define a linear isomorphism ¥, of V,

onto itself by

Yalef?) = (<12,

for p= —n,—n+2,... ,n. Using this isomorphism 1, we define two (n-+1)-
dimensional representations cr(l) and a(l) 1 of F x SL(2,R) as follows.

Representation spaces of on’l and of Un,,‘1 are both V. Action of SL(2,
R) on V,, is denoted by m, and for g € SL(2,R), put

1 1
on1(9) = 0,)1(9) = m(9).

For the action of F, cr,(ll’)l(a) and aflfll(a) are defined by

onki(a) =

Then these two representations give finite-dimensional irreducible represen-

 tations of F x SL(2,R) ~ M; (j = 1,2). |

In the following discussion, we denote the representation space for the
irreducible representation (1)i1 by Vi +1.

For an integer n, |n| > 1, let 7 be the discrete series representation
of SL(2,R) having n as its highest weight or lowest weight, and H,, the
representation space of 7. We can take an orthonormal basis {vp } of H,
consisting of weight vectors, where v ( ) is. a weight vector for weight p and
p=n,n+2,...(ifn>0),p —-n,n-—2,...(1fn< 0). Then, there is a linear
isomorphism T of H, onto H_, such that T maps v,(, ) to vC ”). Now, we
introduce another irreducible representation 7, of F X SL(2,R). Asan S L(2
R)-module, 7, = ) @ %) and the action of a € F is given by T,(a) (vp ,

W) = (W, Tol) = (0,057,
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2.2. Parametrization of discrete series representations of G

Let E. be the totality of Af-dominant, regular, integral linear forms
A on t. For each A € E,, take a positive system AT = AT(J) of A in
such a way that A is AT-dominant. We can parametrize the discrete series
representations of G by E., denoting the discrete series of G with Harish-
Chandra parameter A by 7. ,

Let AT (J = I,1II, III) be positive systems of A defined as follows:

AF = {ay, ay, oy + g, 204 + @, 30y + ay, 30y + 2a,},
A = {o; + ay, —ay, oy, 204 + Qy, 30y + 204, 30, + s},

+ . f
AIII - {“‘al - az, 3@1 + 2&2, 2&1 ‘+’ a2, al, -—~C¥2, 3&1 + sz} .

For a discrete series m, of (G, we may assume that the corresponding
positive system {a € A | (a,A) > 0} C A is one of the above AT’s. Define
three subsets Z; (J = I,II,IIT) of B, by E; = {A € E, | A* = AT}. Put
pe = %ZaEA;" a, pp = %EaeAi aand A = A — p,+ p,,. This linear form ) is
called the Blattner parameter of 7, and the diéqrete series m, has the lowest

K-type Ty.

2.3. Method for the determination of embeddings

To determine embeddings of discrete series of G into its generalized prin-

cipal series, we use the same method as in [7, 9.

-+
AII =514

O : positive root

Figure 2: Three possible positive systems
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For a finite-dimensional representation (7,V’) of K, we introduce a func-

tion space
C2(G) ={f : G 3V | [(kg) = (k)] (9) (Vk € K, g € O}

Since K acts on p by adjoint action, we can take a tensor product represen-
tation 7, ® Ad |,. This tensor product is decomposed as 7y ® Ad |, ~ 7+ @77,
where 7+ (resp. 77) is the sum of irreducible components of 7, ® Ad |, with
height Weight of the form A + a, a € A} (resp. —a € A}). According to
this decomposition, the space V) ® p is decomposed as V) @ p =~ VteVv-,
where VZ is the sum of K-submodules corresponding to 7*. Then we have
a projection Py of V), ® p onto V'~ along this decomposition.

Now we define the main tool of our method, differential operator Dj,
as follows: take an orthonormal basis {X;} of p with respect to the inner
product (-,-) and for functions f in CZ(G), put

(VA9 = (Lx,/)9) ®X;,

(Daf)(g) = P(VF)(9),

where Ly, is the differentiation by X; as a left invariant vector field. For the
explicit description of the operator Dy, see [9, §§3.3-3.5].

Take a parabolic subgroup P of G, and let P = MpApNp beits Langlands
decomposition. For an irreducible admissible representation ¢ of Mp and a
linear form p on ap, £ = 0 ® e* is an irreducible admissible representation of
the Levi part MpAp. Put £ = o®e#*Pr. Here, pp(H) = tr(ad H|,,) (H €
ap). For a character n of Np, put Dy, be the restriction of Dy to the subspace

C(Gym) ={f € CX(G) | flgn) =n(n)" f(9) (Yg € G,n € Np)}.

We also write DA,INH by Di 1y, for simplicity. Then we have the following
facts.

Theorem 2.1 (cf. [7, Theorem 2.4)). There is a linear isomorphism

Homg x) (7}, Indf,P () ~ KerDy .
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Theorem 2.2 (cf. [7, Theorem 3.5]). There is a linear isomorphism
Homg 1) (7}, IndE (¢ ® 1n,)) = Homy g, (€, Ker DA,IN,;) .

In these two theorems, 7} denotes the discrete series of G contragredient to
m,. Note that the case of groups of type Gs, every discrete series represen-

tation is self-contragredient, that is, 7} >~ 7.
Remark.

(1) Theorem 2.4 in [7] is proved much wider class of representation 7, but

we need the results only for characters.

(2) In [7], Theorems 2.1, 2.2 are proved under the restriction that the Blat-
tner parameter A is “far from the walls”, but this condition is no longer

necessary.

2.4. Description of the embeddings

The theorems in the previous subsection say that if we solve the differ-
ential equation Dy,f = 0 (and determine its fine structure) then we can
obtain the embeddings of discrete series. For example, by finding out the
M, Aj-module structure of Ker Dy Ny s WE have the following result.

Theorem 2.3. Discrete series my can be embedded into Ind§, (¢ ® 1y,) with
the representations £ of My A, listed below with multiplicity 1.

o If A is Af-dominant, then ¢ = U,(-,le) ® Xs—15 Tay & X—(s—r—2)/2, Where
e = (—1)er2,

o If A is A}L'I-domz'nant, then £ = o, ® X(r—s—2)/2-
o If A is Afy-dominant, then £ = To, ® X(r—s—4)/2-

Here, a) = (r +35)/2 and x4, a € R, is the character of A defined by
Xa(exptHy) = exp(at). '

Since the proof of this result, or the process of solving the differential equa-
tion, is too long and elaborate, we omit it here and the complete proof will
be published later.
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Remark. In the proof of this result, we solve the equation D), under
some condition in A stronger than the condition “far from the walls”. But
by the aid of the translation functor introduced in [10], we can observe that

the result 2.3 is valid for every regular A.

3. Partial results and remaining problems

In the preceding argument, we considered the operator D), with the
trivial character of the unipotent radical of a parabolic subgroup. If we
change the character 7 to arbitrary one, then we can find out the generalized
Whittaker models of discrete series. The author tried to determine Ker Dy,
for (may be degenerate) character of the unipotent radical of a minimal
parabolic subgroup and there is a partial result.

In the following, we assume that the Harish-Chandra pa,raméter Aofm,

is A7-dominant. Define linear forms p; (j = 1,2) on ag by

/1»1(1?1) =—(s+2), Ml(f:fz) =r,
pa(Hy) = —3(s —7+4), p(Hz)=—3(r+3s).

Let 9, (j = 1,2) be analytic functions defined by

i) = 2 o

Note that 1);(z%/4) is the Bessel function Jy(z). Using these 1;’s, we define
two functions ¢y, w2 on A as follows:

p1(a) = @ exp(ma™ )i (3mpa™?)
pa(a) = @ exp(ma™}{a(nda) + 2ua(log a)ys(irga>")} .

Here, for a linear form y on o and a € A, o* = exp(u(log a)), and n; =
n(Hj).
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Now we introduce five V)-valued functions f, (* = 0,+,—,1,2) on A. For
fo, f+ and f_, they are defined by

fola) = Z Vp,~p@* ez(:i)p g
P

f+(a) = o exp(ma™)es?,

f-(a) = a* exp(—ma‘”‘)eﬁfﬁ}ﬂ ,

for a € A. Here the sum is taken for p = —r,—~r +2,... ,7, and

=y (o) () (02

Two remaining functions f; and f; are given by

fi(@) =) ypg(myta?)Pr 2D (@)el? (= 1,2),

P

where -

H=-

e o ifp+q¢=0
(L, —s=p—0) - (Lg, — s — )(Lg, — 5 — g ifp+g>0

(-D)®*D2(Lg —s+p+q)--(Lg, —s—4)(Ly, —5—2)p; ifp+q<0 .

Extend these fi's to G by f.(kan) = n(n)~'r,(k)fu(a) for k € K, a € A
and n € N. Then f,’s are functions in CZ(G;n) and the following lemma
describes Ker Dy ,,.

Lemma 3.1. If A is Af-dominant, then the dimension of Ker Dyy is (1)
zero, (ii) two, and (iii) three, according to the cases (i) m # 0 and gy # 0,
({) m#0,m=0o0rn=0,n#0, and (iii) 7 =70 = 0. In cases (ii) and
(iii), a basis of Ker D, is given as follows:

{f+’ f—} 7’f 771750, 772=O)
{f1, 2} f m=0,n7#0,
{an f+$ f——} Zf m=mn=0.



If A is Af-dominant, then Dim 7, = 5 < 6 = dim n, where Dim stands for
the Gelfand-Kirillov dimension. So, general theory tells us that Ker D), =
{0} for non-degenerate n with Aj-dominant A. Note that, for our group, 7
has Whittaker models if and only if A is Aj-dominant.

Therefore the most interesting case is the case of Aj;-dominant A, but
recently the case of A} also causes our interest in connection with Borel-
de Siebanthal discrete series. The previous lemma may be a trifle, but it

could be a basepoint for attacking more interesting case, that is, generalized
Whittacker models.
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