Shift Automorphisms of the Reduced Free Products of Infinitely Many Algebras

MARIE CHODA

Department of Mathematics, Osaka Kyoiku University, Asahigaoka, Kashiwara 582-8582, Japan

長田 まりゑ (大阪教育大学)

§0. Introduction.

In the class of C^* -algebras constructed by the reduced free product, the class of the reduced free products of infinitely many copies indexed by the integers \mathbb{Z} is the smallest in the sense of Theorem 1 below.

For such the reduced free product C^* -algebras, the shift automorphism coming from the shift on integers are investigated.

§1. Reduced free products.

The reduced free product construction for C^* -algebras was introduced independently by Avitzour [A] and Voiculescu [V].

By a C^* -probability space (A, ϕ) , we means that A is a unital C^* -algebra (operator norm closed *-algebra of bounded operators on a Hilbert space) and ϕ is a state of A.

Given a family of C^* -probability space $(A_i, \phi_i)_{i \in I}$, where the GNS representation by each ϕ_i is assumed to be faithful, the reduced free product (A, ϕ) of $(A_i, \phi_i)_{i \in I}$ is denoted by

$$(A,\phi) = \underset{i \in I}{*} (A_i,\phi_i).$$

Let $H_i = L^2(A_i, \phi_i)$, and ξ_i is the image vector of the unit of A_i in H_i . Let $H_i^{\circ} = H_i \ominus \mathbb{C} \xi_i$. The free product Hilbert space H of $(H_i, \xi_i)_{i \in I}$ is defined for the distinguished vector ξ (which is called the vacuum vector) by the form:

$$H = \mathbb{C}\,\xi \oplus \bigoplus_{n \geq 1} (\bigoplus_{i_1 \neq \dots \neq i_n} H_{i_1}^{\circ} \otimes \dots \otimes H_{i_n}^{\circ}), \quad i_j \in I$$

and it is denoted by $(H,\xi) = *_{i \in I}(H_i, \xi_1)$.

Each A_i acts faithfully on H_i as the left multiplication operators. Let $A_i = \{x \in A_i; \phi_i(x) = 0\}$, and let

$$red(A) = \{x_1x_2 \cdots x_n; x_j \in \overset{\circ}{A}_{i_j}, (i_1 \neq i_2 \neq \cdots \neq i_n), \}.$$

The A in the reduced free product $(A, \phi) = (A_i, \phi_i)$ is the C^* -algebra on the reduced free product Hilbert space H, and A is generated by the identity operator

on H and red(A). The ϕ is the state of A, which is called the vacuum state and defined by

$$\phi(a) = \langle a\xi, \xi \rangle.$$

How to operate an $x \in red(A)$ on H?

Assume that $x \in red(A)$ has a form that $x = x_1 x_2 \cdots x_n$, for $x_j \in A_{i_j}$, $(i_1 \neq i_2 \neq \cdots \neq i_n)$. Then

$$x\xi = x_1\xi_{i_1} \otimes x_2\xi_{i_2} \otimes \cdots \otimes x_n\xi_{i_n},$$

and for the vector

$$\zeta = \zeta_1 \otimes \zeta_2 \otimes \cdots \otimes \zeta_m, \quad \zeta_i \in \overset{\circ}{H}_{j_i}, \quad (i = 1, \cdots, m),$$

$$x\zeta = x\xi \otimes \zeta, \quad \text{for} \quad i_n \neq j_1,$$

$$x\zeta = (x_1\zeta_1 - \langle x_1\zeta_1, \xi_{i_1} \rangle \xi_{i_1}) + \langle x_1\zeta_1, \xi_{i_1} \rangle \xi, \quad \text{for} \quad i_n = j_1, n = m = 1$$

$$x\zeta = (x_1\zeta_1 - \langle x_1\zeta_1, \xi_{i_1} \rangle \xi_{i_1}) \otimes \zeta_2 \otimes \cdots \otimes \zeta_m$$

$$+ \langle x_1\zeta_1, \xi_{i_1} \rangle \zeta_2 \otimes \cdots \otimes \zeta_m, \quad \text{for} \quad i_n = j_1, n = 1, m \geq 2$$

$$x\zeta = x_1\xi_{i_1} \otimes \cdots \otimes x_{n-1}\xi_{i_{n-1}} \otimes (x_n\zeta_1 - \langle x_n\zeta_1, \xi_{i_n} \rangle \xi_{i_n})$$

+ $\langle x_n\zeta_1, \xi_{i_n} \rangle x_1\xi_{i_1} \otimes \cdots \otimes x_{i_{n-1}}\xi_{i_{n-1}}, \text{ for } i_n = j_1, n \ge 2, m = 1$

and

$$x\zeta = x_1\xi_{i_1} \otimes \cdots \otimes x_{i_{n-1}}\xi_{i_{n-1}} \otimes (x_n\zeta_1 - \langle x_n\zeta_1, \xi_{i_n} \rangle \xi_{i_n}) \otimes \zeta_2 \otimes \cdots \otimes \zeta_m$$

+ $\langle x_n\zeta_1, \xi_{i_n} \rangle x_1 \cdots x_{n-1}(\zeta_{j_2} \cdots \otimes \zeta_{j_m}), \text{ for } i_n = j_1, n, m \geq 2.$

The characterization for the reduced free product of C^* -algebras is given in [V1] as follows :

A given (A, ϕ) is isomorphic to $*_{i \in I}(A_i, \phi_i)$ if and only if there exists an isomorphism $\sigma_i : A_i \to A$ such that

- (i) A is generated by $\{\sigma_i(A_i)\}_{i\in I}$,
- (ii) $\phi \cdot \sigma_i = \phi_i$,
- (iii) $\phi(\sigma_{i_1}(a_{i_1})\cdots\sigma_{i_n}(a_{i_n}))=0$ for $a_{i_1}\in A_{i_j}^\circ$ and $i_1\neq i_2\neq \cdots\neq i_n$, and the GNS construction applied to (A,ϕ) yields a faithful representation of A.

§2. Free products of infinitely many C^* -algebras.

The most typical example of reduced free product C^* -algebra appears as the C^* -algebra generated by the left regular representation for the free product of some groups.

Remember that the free product $\mathbb{Z}_2 * \mathbb{Z}_2$ of the group \mathbb{Z}_2 is amenable and not a free group. To get a C^* -algebra belonging to a "new class" from the reduced free product construction $(A_1, \phi_1) * (A_2, \phi_2)$, it is offen used so called Arvitzour's unitary condition:

$$\exists$$
 unitaries a, b, c with $a \in \mathring{A}_1$, $b, c, b^*c \in \mathring{A}_2$.

In the class of C^* -algebras constructed by the reduced free product, the class of the reduced free products of infinitely many copies is the smallest in the following sense:

Theorem 1. Assume that the pair $\{(A_1, \phi_1), (A_2, \phi_2)\}$ satisfies Arvitzour's unitary condition. Then

$$(A_1,\phi_1)*(A_2,\phi_2)\supset \underset{i\in\mathbb{Z}}{*}(B_i,\psi_i),$$

where

$$(B_i, \psi_i) = (A_1, \phi_1) * (A_2, \phi_2), \quad \text{for all} \quad i \in \mathbb{Z}.$$

Let (A_i, ϕ_i) be the copy of a C^* -dynamical system (A_0, ϕ_0) for all $i \in \mathbb{Z}$. The reduced free product $(A, \phi) = \underset{i \in \mathbb{Z}}{*} (A_i, \psi_i)$ has the automorphism α induced by the shift $i \to i+1$ on the integers \mathbb{Z} . We call such the automorphism α on A free shift.

As an example of a more precise inclusion of Theorem 1, we have the following: **Example** (cf. [CD]). Let (A_1, ϕ_1) be a non-trivial C^* -dynamical sysyem, that is, $A_1 \neq \mathbb{C}$. Then

$$(A_1,\phi_1)*(C(\mathbb{T}),\int \cdot dt)=\underset{i\in\mathbb{Z}}{*}(B_i,\psi_i)\rtimes_{\alpha}\mathbb{Z}$$
 the crossed product,

for the copy (B_i, ψ_i) of $(A_1, \phi_1) * (C(\mathbb{T}), \int \cdot dt)$, $(i \in \mathbb{Z})$. Here $C(\mathbb{T})$ is the continuous functions on the Torus \mathbb{T} , $\int \cdot dt$ is the state given by the integral, and α is the free shift.

Proposition 2. Let $(A, \phi) = \underset{i \in \mathbb{Z}}{*} (A_i, \psi_i)$, where $(A_i, \phi_i) = (A_0, \phi_0)$ for all $i \in \mathbb{Z}$. Then the free shift α on A gives an algebraic K-system in the sense of Narnhofer-Thirring [NT], that is, there exists a C^* -subalgera $B \subset A$ with $B \subset \alpha(B)$, A is generated by the family $\{\alpha^n(B)\}_{n \in BZ}$, and $\bigcap_n \alpha^n(B) = \mathbb{C} 1$.

§3. Entropies for the free shift.

By a C^* -dynamical system (A, α, ϕ) , we mean that A is a unital C^* -algebra, α is an automorphism, and ϕ is an α -invariant state of A. For a given C^* -dynamical system (A, α, ϕ) , we denote by $h_{\phi}(\alpha)$ the Connes-Narnhofer-Thirring entropy ([CNT]), by $H_{\phi}(\alpha)$ the Sauvageot-Thouveneot entropy ([ST]), and by $H_{(\phi, \Phi, A_0)}$ Alicki-Fannes entropy ([Af]) which is defined with respect to a glovally α -invariant *-subalgebra A_0 of A.

Theorem 3. Let $(A, \phi) = \underset{i \in \mathbb{Z}}{*} (A_i, \psi_i)$, where $(A_i, \phi_i) = (A_0, \phi_0)$ for all $i \in \mathbb{Z}$, and let α be the free shift on A.

(i) ([C1]) Sauvageot-Thouveneot entropy has the relation

$$H_{\phi * \psi}(\alpha * \beta) = H_{\psi}(\beta) = H_{\phi \otimes \psi}(\alpha \otimes \beta),$$

for any C*-dynamical system (B, ψ, β) . In special, $H_{\phi}(\alpha) = 0$.

(ii) ([CT]) Let $A_0 \subset A$ be the natural α -invariant *-subalgebra generated by the identity and red(A). Then Alicki-Fannes entropy has

$$H_{(\phi,\alpha,\mathcal{A}_0)} = +\infty.$$

In the case where the C^* -algebra is nuclear, Sauvageot-Thouveneot entropy coinsides with Connes-Narnhofer-Thirring entropy ([ST]).

The notion of "nuclear" for C^* -algebras is corresponds to that of "amenable" for groups. In general, the free product of groups is not amenable, and the reduced free product C^* -algebra is not nuclear.

However there exists a nuclear C^* -algebra which is given as the reduced free product of \mathbb{Z} copies of an algebra. As an example, we have the Cuntz algebra \mathcal{O}_{∞} .

Remark. Stormer([S]) showed that $h_{\phi}(\alpha) = 0$ for any free shift α .

As another type of a C^* -dynamical entropy, we have a slight modification of Voiculescu's topological entropy $ht(\cdot)$ ([V2]). The definition is as follows:

Definition ([C2]). For a nuclear C^* -algebra A with unity, let CPA(A) be the set of tripple (φ, η, C) such that C is a finite dimensional C^* -algebra, and $\varphi : A \to C$ and $\eta : C \to A$ are unital completely positive maps.

Let Ω be the set of finite subsets of A and let ϕ be a state of A. For an $\omega \in \Omega$, put

$$scp_{\phi}(\omega; \delta) = \inf\{S(\phi \cdot \eta) : (\varphi, \eta, C) \in CPA(A), \|\eta \cdot \varphi(a) - a\| < \delta, a \in \omega\}.$$

Here $S(\phi \cdot \eta)$ means the entropy of the state $\phi \cdot \eta$ of C. For a unital endomorphism ρ of A with $\phi \cdot \rho = \phi$, put

$$ht_{\phi}(\rho,\omega;\delta) = \overline{\lim_{N\to\infty}} \frac{1}{N} scp_{\phi}(\bigcup_{i=0}^{N-1} \rho^{i}(\omega);\delta)$$

$$ht_{\phi}(\rho,\omega) = \sup_{\delta>0} ht_{\phi}(\rho,\omega;\delta).$$

Then the entropy $ht_{\phi}(\rho)$ of ρ is defined by

$$ht_{\phi}(\rho) = \sup_{\omega \in \Omega} ht_{\phi}(\rho, \omega).$$

Proposition 4. ([C2]) For a ϕ -preserving automorphism α of A, Connes - Narnhofer - Thirring entropy $h_{\phi}(\alpha)$, the entropy $ht_{\phi}(\alpha)$ and Voiculescu's topological entropy $ht(\alpha)$ have in general the following relation:

$$h_{\phi}(\alpha) \leq ht_{\phi}(\alpha) \leq ht(\alpha).$$

Remark. ([C2]) We have exaples that $h_{\phi}(\alpha) \neq ht_{\phi}(\alpha)$ or $ht_{\phi}(\alpha) \neq ht(\alpha)$.

Since \mathcal{O}_{∞} is nuclear, we can apply the entropy $ht_{\phi}(\alpha)$ for the free shift on \mathcal{O}_{∞} .

Proposition 5. Let α be the free shift of \mathcal{O}_{∞} . Then

$$ht_{\phi}(\alpha)=0,$$

for the vacuum state ϕ which is the unique α -invariant state of \mathcal{O}_{∞} .

References

- [A] D. Avitzour; Free products of C^* -algebras, Trans. Amer. Math. Soc., 271(1982), 423-435
- [AF] R. Alicki and M. Fannes; Defining quantum dynamical entropy, Lett. Math. Phys. 32(1994), 75-82.
- [C1] M. Choda; Reduced free products of completely positive maps and entropy for free products of automorphisms, *Publ. RIMS*, *Kyoto Univ.*, **32**(1996), 179-190
- [C2] M. Choda; A C*-dynamical entropy and applications to canonical endomorphisms, Preprint.
- [CT] M. Choda and H. Takehana; The Finite Partition in a Dynamical System with Eentropy Depending on the Size, Letters in Math. Phys., 44(1998), 309 315
- [CD] M. Choda and K. Dykema; Purely Infinite, Simple C^* -algebras arising from free product constructions, III, Preprint.
- [CNT] Connes A. Narnhofer H. and Thirring W.; Dynamical entropy of C^* algebras and von Neumann algebras, *Commun. Math. Phys.*, **112**(1987), 691-719
- [Cu] Cuntz J. Simple C*-algebras generated by isometries, Commun. Math. Phys., 57(1977), 173-185
- [NT] H. Narnhofer and W. Thirring; Quantum K-system, Commun. Math. Phys., 125(1989), 564-577
- [S] E. St ϕ rmer; States and shifts on infinite free products of C^* algebras, Fields Inst. Commun., 12 (1997), 281-291
- [V] D. Voiculescu D; Symmetries of somereduced free product C*-algebras, Operator Algebras and Their Connections with Topology and Ergodic Theory, Lecture Notes in Math., Springer-Verlag 1132(1985), 556-588
- [VDN] Voiculescu D., Dykema K., and Nica A.; Free randam variables, CRM Monograph series, Amer. Math. Soc., (1992)
- [V2] Voiculescu D.; Dynamical approximation entropies and topological entropy in operator algebras, Commun. Math. Phys., 170(1995), 249-281