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1 Introduction

In a previous paper [4], we introduced a family {Q@s|S € C(H,K)} of infinite dimensional
Dirac-type operators on the abstract Boson-Fermion Fock space F(H,K) over the pair
(H,K) of two Hilbert spaces H and K, where the index set C(H, K) of the family is the set
of all densely defined closed linear operators from H to K, and investigated fundamental
properties of them. As is shown in [4], this class of Dirac-type operators has a connection
with supersymmetric quantum field theory (SQFT) [19]. Namely Qs gives an abstract
form of free supercharges in some models of SQFT. Interacting models of SQFT can be
constructed from perturbations of Qs [4]. For related aspects and further developments,

see, e.g., [1], (2], 3], [5], [6], [10], [14], [16], [17], [20], [21].

Generally speaking, Dirac-type operators have something to do with a notion of anti-
commutativity, because they are related to representations of Clifford algebras, and this
aspect may be an essential feature of Dirac-type operators (cf. [7], [8], [9], [11], [12]). A
proper notion of anticommutativity, i.e., strong anticommutativity, of (unbounded) self-
adjoint operators was given in [27] and developed by some authors (e.g., [25], [22], [7], [9],
[11], [12]). In a recent papr [15], a theorem on the strong anticommutativity of two Dirac
operators Qg and @t was established with application to constructing representations on

F(H,K) of a supersymmetry algebra arising in a two-dimensional relativistic SQFT.

The aim of this note is to review fundamental aspects of the theory of infinite dimen-
sional Dirac-type operators on the abstract Boson-Fermion Fock space and to present a

summary of the results on their strong anticommutativity obtained in [15].



2 Dirac-type operators on the abstract Boson-Fermion
Fock space—a brief review

Let H be a Hilbert space and ®"H be the n-fold tensor product Hilbert space of H
(n=10,1,2,---; ®(H) := C). We denote by S, (resp. A,) the symmetrizer (resp. the
anti-symmetrizer) on ®"H and by 5,(®"H) (resp. A,(®"H) ) its range, which is called

the n-fold symmetric (resp. anti-symmetric) tensor product of H. The Boson Fock space

Fu(H) and the Fermion Fock space F¢(H) over H are respectively defined by

Fu(H) = EB Sa(®"H), Fi(H):= @An(cg)"H) (2.1)
n=0 n=0

(e.g., [23, §II 4], [18, §5.2]). Let K be a Hilbert space. Then the Boson-Fermion Fock
space F(H,K) associated with the pair (H,K) is defined by

]:(H’ IC) = fb(H) ® ff(lc), (2‘2)

the tensor product Hilbert space of the Boson Fock space over H and the Fermion Fock
space over K. We denote by C(H,K) the set of densely defined closed linear operators
from H to K.

We first present the definitions of basics objects in the Boson Fock space and the
Fermion Fock space. More detailed descriptions on Fock space objects can be found, e.g.,
in [23, §IL.4, Example 2], [24, §X.7] and [18, §5.2].

For each vector ¥ = {\If(")}°°0 € Fu(H) (¥ € §,(®"H)), we use the natural
identification of ¥(®) with {0,--.,0,%(®),0,...} € F,(H). The same applies to vectors in
other inifinite direct sums of H]lbert spaces.

For a subset V of a Hilbert space, we denote by LV the subspace algebraically spanned
by all the vectors of V.

Let Q, := {1,0,0,- -} € Fp(H), the boson Fock vacuum in F,(H). For a subspace D
of H, we define

Foin(D) = L{M, Su(fi® - @ fu)ln €N, f;€D,j=1,---,n}. (2.3)

If D is dense, then Fy, (D) is dense in F,(H).

For each f € H, there exists a unique densely defined closed (unbounded) linear
operator a(f) on F,(H), called boson annihilation operators (its adjoint a( f)* is called a
boson creation operator), such that (i) for all f € H, a(f) =0, (ii) forall n € N, f; €
H,j=1,--+,n,

a(f)Su(fL ® - ® fu) = \/—Z(f,fj)usn (i@ ®Ffi® - ® fa),

where f; indicates the omission of f;, and (iii) Fpgn(H) is a core of a(f). We have
Sn(®"H) = E({a(fl)* T a(fn)*lefj €EH,j=1,--- ’n})’ (2'4)
where {-} denotes the closure of the set { }. The set {a(f), a(f)*|f € H} satisfies the

canonical commutation relations

[a(f),a(g)*] = (£, 9)n, [a(f),a(g)] =0, [a(f)",a(g)"] =0
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for all f,g € H on Fp sin(H).

A similar consideration can be done in the Fermion Fock space F¢(K). The fermion
Fock vacuum Q¢ in F¢(K) is defined by Q¢ := {1,0,0,---} € F(K). For a subspace D of
K, we define

Fean(D) = L{Q%, Ap(ua @ - @un)ln > 1, u; €D, j=1,---,n}. (2.5)

If D is dense, then Fi gn(D) is dense in F¢(K).

For each u € K, there exists a unique bounded linear operator b(u) on F¢(K), called
fermion annihilation operators on F¢(K) (b(u)* is called a fermion creation operator), such
that (i) for all u € K, b(u)Q =0, (ii) foralln e N, u; €K, j=1,---,n -

1 & .
b(w)An(u1 ® -+ ® un) = vn S (1Y, u )1 Sp-1(u1 @ - @ ® -+ - ® tn).
i=1
We have ’
An(Q"K) = L {b(u1)* - - - b(un)*Qlu; €K, j=1,---,n}. (2.6)

The set {b(u), b(u)*|u € K} satisfies tha canonical anti-commutation relations

{b(u),b(v)*} = (w,v)k, {b(w),b(v)} =0, {b(u)*,b(v)*} =0

for all u,v € K, where {A, B} := AB + BA.
The Fock vacuum in the Boson -Fermion Fock space F(H,K) is defined by

Q:= QY. (2.7)
'The annihilation operators a(f) and b(u) are extended to operators on Fi (H,K) as
CAf)=a(f)®T, B(u):=I®bu), (2.8)

where I denotes identity operator.
For a linear operator A, we denote by D(A) its domain. Let § € C(H,K). Then we
define

Ds

L{A( f)F e AGfa) Blus) -+ B(up)* Q| n,p > 0,f; € D(S),  (2.9)

j:l,...’n, ’U:kE.D(S*),k—_—l,"',p},

= Fosa(D(5)) Oug Frsa(D(5*)), (2.10)

where ®a1; denotes algebraic tensor product. It follows that Dg is dense in F. The
following proposition is proved in [4].

Proposition 2.1 There erists a unique densely defined closed linear operator ds on
F(H,K) with the following properties: (i) Ds is a core of dg; (i) for each vector ¥ € Dg
of the form '

U = A(fi)* - A(fo)* B(u)* -+ B(up)"Q, (2.11)
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dg acts as
ds¥ = 0 forn=0,

ds\I’ = ZA(fl)* "'A(/};)*'"A(fn)*B(Sfj)*B(ul)*'”B(’Mp)*Q forn > 1’
=1

where AG;)* indicates the omission of A(f;)*. Moreover the following (a)-(d) hold:
(2) &z =0.
(b) For each complete orthonormal system (CONS) {e,}2, of K with e, € D(5*),

v oo

dg¥ = Z A(S%e,)B(e,)*¥, W€ Dg,
n=1
where the convergence is taken in the strong topology of F(H,K).

(c) For each CONS {¢,}22, of H with ¢, € D(S), we have

N
(®,ds¥)rn,k) = lim (q’, > A(6n)B(S¢n)"¥ , ®,VeDs.

n=1 ) F(H,K)

(d) Ds C D(d%) and
S = 3 (-DFAS W) AR - A Bl - Bla)" - By
k=1

for vectors ¥ of the form (2.11) with p > 1. In the case p = 0, we have d§¥ = 0.

A Dirac-type operator on F(H, K) is defined by
Qs =ds + dg (2.12)

with D(Qs) = D(ds) N D(d¥).

Let A be a self-adjoint operator on a Hilbert space A'. Then there is a unique self-
adjoint operator A, on ®"X such that ®3,D(A) is a core of D(4,) and, for all f; €
D(A), 5 =1y ym, Ap(f1® @ fa) =Ty 1@+ ® f_1 ® Af; ® fi41® - ® fu (23,
§VIIL.10, Corollary]). Putting Ag = 0, one can define a self-adjoint operator

dl'(A) == P A. ' (2.13)
n=0 .
on P2, ®"X, called the second quantization of A ([23, §VIIL. 10, Example 2], [18, §5.2]).

It is easy to show that dI'(A) is reduced by Fx(X) (# = b,f). We denote the reduced
part of dI'(A) to Fx(X) by dT'x(A). We put

Ny = dly(I), (2.14)
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called the number operator on Fu(X').
Let
Ty = (—1)78Ne, (2.15)

We introduce an operator A
Ag :=dTp(S*S)® I + I ®dI¢(S5¥)  (2.16)

acting in (M, K), which is nonegative and self-adjoint (cf. [23, §VIIL10, Corollary]). For
a linear operator A on a Hilbert space, we set

C(A) := N, D(A™).
Let
DY - (2.17)
= £{ ALY -+ A ) -+ Bu Q| n,p 2 0, f; € C=(57S),
j=1,m, up € CO(SSY), k= 1,---,p}.

Theorem 2.2 [4]

(i) The operator Qs is self-adjoint, and essentially self-adjoint on every core of Ag. In
particular, Qs is essentially self-adjoint on DS

(ii) The operator T'y leaves D(Qs) invariant and
F4Qs+QsTy =0

on D(Qs).

(iii) The following operator equations hold :
Ag = Q2S = dfc}dg + dsdgv.
Remark 2.1 The operators ds and d% leave DF invariant and so does Q) s.

Because of part (iii) of Theorem 2.2, we call the operator As the Laplacian associated
with the Dirac-type operator @s.



3 Strong anticommutativity of the Dirac-type operators

Let A and B be self-adjoint operators on a Hilbert space. We say that A and B strongly
commaute if their spectral measures commute. On the other hand, A and B are said to
strongly anticommute if e"BA C Ae™"B for all ¢t € IR ([27), [22])!. It turns out that this
definition is symmetric in A and B [22].

For various Dirac-type operators, the notion of strong ant1commutat1v1ty plays
important role ([7], [8], [10], [11]).

For each S € C(H,K), the operator

Ls:= (g ‘f)) | (3.1)

acting in H €D K is self-adjoint. This operator is an abstract Dirac operator on the Hilbert
space H @ K[26, Chapter 5].

The strong anticommutativity of Qg and Qr (S,T € C(H,K)) is characterized as
follows.

Theorem 3.1 Let §,T € C(H,K). Then Qs and Q strongly anticommute if and only if
Lgs and Lt strongly anticommute. In that case, S+ T € C(H,K) and Qs+ = Qs + Q7.

This theorem is one of the main results of the paper [15], which establishes a beautiful
correspondence between the strong anticommutativity of Lg and L7 and that of Qg and

Qr.

To prove Theorem 3.1, we need some fundamental facts in the theory of strongly
anticommuting self-adjoint operators [27, 22] as well as its applications, together with the
following lemma. For the details, see [15].

Lemma 3.2 Let S,T € C(H,K). Suppose that Ls and Lt strongly anticommute. Then
the following (i)-(v) hold:

() S+ T € C(H,K) and (S £ T)* = §* £ T*.

(ii) |S] and |T| strongly commute.

(iii) [S*| and |T*| strongly commute.

(iv) D(§*$) N D(T*T) C D(T*S) N D(S*T) and, for all f € D(5*S) N D(T*T),
(T*S + §*T)f = 0.

(v) D(§8*)n D(TT*) C D(T5*) N D(ST*) and, for all w € D(55%) n D(TT*),
(TS* + ST*)u = 0.

!The authors of [27] and [22] call this notion simply anticommutativity, but, to be definite, we call it
strong anticommutativity.
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In terms of S and T, a necessary and sufficient condtion for Lg and Ly to strongly
anticommute is given as follows.

Proposition 3.3 Let S,T € C(H,K). Then'.Ls and Lt strongly anticommute if and only
if the folloiwng (i) and (ii) hold:

(i) $£T€C(H,K) and (S T)* = §*£T"
(ii) For all f,g € D(S)N D(T) and u,v € D(S§*) N D(T*),
(S,Tg) + (Tf,50) =0, (5°u,T*v)+ (T*u, %) =0.

4 Application to constructing representations of a super-
symmetry algebra -

We consider Fock space representations of the algebra Agysy generated by four elements
Q1,Q2, H, P with defining relations

Q=H+P, Qi=H-P, Qi1Q:+Q:Q:1=0. (4.1)

This algebra is called a supersymimetry algebra, which arises in a relativistic SQFT in the
two-dimensional space-time ([19], [13]). The elements H,P and Q; (j = 1,2) are called
the Hamiltonian, the momentum operator and the supercharge, respectively.

We recall a definition from [13]. Let F be a Hilbert space, D a dense subspace of
F, and H,P,Q1,Q; be linear operators on F. We say that {F,D,H,P,Q1,Q2} is a
symmetric representation of Asusy if H, P,Q); and @), are symmetric and leave D invariant
satisfying (4.1) on D. A symmetric representation {F,D, H,P,Q1,Q3} of Asysy is said
to be integrable if (i) H,P,Q; and Q2 are essentially self-adjoint (denote their closures
by H,P,Q; and Q, respectively); (ii) {H, P,@1} and {H; P,Q2} are families of strongly
commuting self-adjoint operators, respectively; (iii) H and P satisfy the relativistic spectral
condition

+P<H. A (4.2)

Suppose that Lgs and L strongly anticommute. Then, by Lemma 3.3(ii) and (iii), 5*$
and T*T strongly commute, and §5* and TT™* strongly commute. Hence $*5 + T*T and
S§S* + TT* are nonnegative, self-adjoint, and §*S — T*T and SS* — TT* are essentially
self-adjoint. Therefore we can define self-adjoint operators
Hsr = %{drb(s*s +T*T) @ I+ I ® dT;SS* + TT*)}, (4.3)

Psy = % (i, (S =T°T) @ I + 1 ® dI¢(S5* = TT")} (4.4)

where for'a closable linear operator A, A (or A~) denotes its closure. Note that Hgr is
nonnegative, but, Psr may be neither bounded below nor bounded above.
. For a self-adjoint operator A, we denote by E4 its spectral measure. Let

Ds1 = L{E|g4|([a,b])E|q.([c,d])¥|¥ € F(H,K),0<a<b<00,0<e<d< o0}
(4.5)
We can prove the following theorem (for the proof, see [15]).



Theorem 4.1 Let §,T € C(H,K) and suppose that Ls and Lt strongly anticommute.
Then {F(H,K),Dsx,Hs1,Ps1,Qs,QT} is an integrable representation of Asysy.

We give only one basic example from SQFT (for other examples, see [19], [4]).

Example Let H = K = L?(R) and R > p — w(p) be a nonnegative function on IR which
is Borel measurable, almost everywhere (a.e.) finite with respect to the Lebesgue measure
on IR, and satisfies

Ip| < w(p), a.epelR.

v(p) = \/Ap + w(p)

with A € [0,1] (a constant parameter) and 6(p) be an a.e. finite real-valued Borel mea-
surable function on IR. Define the operators S and T on L2(IR) to be the multiplication
operators by the functions

S(p) 1= ()P, T(p) = 1(~p)e®),

respectively. Then it is easy to see that § and T satisfy the conditions (i) and (ii) in
Proposition 3.3 with D(T') = D(S) = D($*) = D(T*) and

Let

S*S = S§*=XMptw, T"T=TT"=-Ip+uw,
S*T = TS =—iyfw?2—-A2p2, T*S=S8T*"= iw? — A2p2,

Hence, by Proposition 3.3, Lg and L7 strongly anticommute. Therefore, by Theorem
4.1, {F(L*(R),L*(R)), Ds, Hs1, Ps1,Qs,Q1} with these § and T is an integrable
representation of Asysy. We have

CHsr = dTp(w)® I+ I®dTe(w),
PS,T = A{de(p) ® I + I ® de(p)}

Note that Hgr and Pst are independent of 6.

If w(p) = v/p? + m? with a constant m > 0, A = 1 and 6 = 0, then Hgr and Psr are
respectively the Hamiltonian and the momentum operator of a free relativistic SQFT in
the two-dimensional space-time, called the N = 1 Wess-Zumino model (cf. [19]).
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