A Class of Dirac-Type Operators on the Abstract Boson-Fermion Fock Space and Their Strong Anticommutativity

Asao Arai (新井朝雄)
Department of Mathematics, Hokkaido University
Sapporo 060-0810, Japan
e-mail: arai@math.sci.hokudai.ac.jp

1991 MSC:81Q10, 47N50, 81Q60, 81R10

Key words: infinite dimensional Dirac-type operator, Boson-Fermion Fock space, strong anticommutativity, supersymmetry

1 Introduction

In a previous paper [4], we introduced a family $\{Q_S|S\in\mathcal{C}(\mathcal{H},\mathcal{K})\}$ of infinite dimensional Dirac-type operators on the abstract Boson-Fermion Fock space $\mathcal{F}(\mathcal{H},\mathcal{K})$ over the pair $\langle \mathcal{H}, \mathcal{K} \rangle$ of two Hilbert spaces \mathcal{H} and \mathcal{K} , where the index set $\mathcal{C}(\mathcal{H},\mathcal{K})$ of the family is the set of all densely defined closed linear operators from \mathcal{H} to \mathcal{K} , and investigated fundamental properties of them. As is shown in [4], this class of Dirac-type operators has a connection with supersymmetric quantum field theory (SQFT) [19]. Namely Q_S gives an abstract form of free supercharges in some models of SQFT. Interacting models of SQFT can be constructed from perturbations of Q_S [4]. For related aspects and further developments, see, e.g., [1], [2], [3], [5], [6], [10], [14], [16], [17], [20], [21].

Generally speaking, Dirac-type operators have something to do with a notion of anticommutativity, because they are related to representations of Clifford algebras, and this aspect may be an essential feature of Dirac-type operators (cf. [7], [8], [9], [11], [12]). A proper notion of anticommutativity, i.e., strong anticommutativity, of (unbounded) selfadjoint operators was given in [27] and developed by some authors (e.g., [25], [22], [7], [9], [11], [12]). In a recent papr [15], a theorem on the strong anticommutativity of two Dirac operators Q_S and Q_T was established with application to constructing representations on $\mathcal{F}(\mathcal{H}, \mathcal{K})$ of a supersymmetry algebra arising in a two-dimensional relativistic SQFT.

The aim of this note is to review fundamental aspects of the theory of infinite dimensional Dirac-type operators on the abstract Boson-Fermion Fock space and to present a summary of the results on their strong anticommutativity obtained in [15].

2 Dirac-type operators on the abstract Boson-Fermion Fock space—a brief review

Let \mathcal{H} be a Hilbert space and $\otimes^n \mathcal{H}$ be the *n*-fold tensor product Hilbert space of \mathcal{H} $(n=0,1,2,\cdots;\otimes^0(\mathcal{H}):=\mathbb{C})$. We denote by S_n (resp. A_n) the symmetrizer (resp. the anti-symmetrizer) on $\otimes^n \mathcal{H}$ and by $S_n(\otimes^n \mathcal{H})$ (resp. $A_n(\otimes^n \mathcal{H})$) its range, which is called the *n*-fold symmetric (resp. anti-symmetric) tensor product of \mathcal{H} . The Boson Fock space $\mathcal{F}_b(\mathcal{H})$ and the Fermion Fock space $\mathcal{F}_f(\mathcal{H})$ over \mathcal{H} are respectively defined by

$$\mathcal{F}_{b}(\mathcal{H}) := \bigoplus_{n=0}^{\infty} S_{n}(\otimes^{n}\mathcal{H}), \quad \mathcal{F}_{f}(\mathcal{H}) := \bigoplus_{n=0}^{\infty} A_{n}(\otimes^{n}\mathcal{H})$$
 (2.1)

(e.g., [23, §II.4], [18, §5.2]). Let K be a Hilbert space. Then the Boson-Fermion Fock space $\mathcal{F}(\mathcal{H}, K)$ associated with the pair $\langle \mathcal{H}, K \rangle$ is defined by

$$\mathcal{F}(\mathcal{H}, \mathcal{K}) := \mathcal{F}_{b}(\mathcal{H}) \otimes \mathcal{F}_{f}(\mathcal{K}), \tag{2.2}$$

the tensor product Hilbert space of the Boson Fock space over \mathcal{H} and the Fermion Fock space over \mathcal{K} . We denote by $\mathcal{C}(\mathcal{H},\mathcal{K})$ the set of densely defined closed linear operators from \mathcal{H} to \mathcal{K} .

We first present the definitions of basics objects in the Boson Fock space and the Fermion Fock space. More detailed descriptions on Fock space objects can be found, e.g., in [23, §II.4, Example 2], [24, §X.7] and [18, §5.2].

For each vector $\Psi = \{\Psi^{(n)}\}_{n=0}^{\infty} \in \mathcal{F}_b(\mathcal{H}) \ (\Psi^{(n)} \in S_n(\otimes^n \mathcal{H}))$, we use the natural identification of $\Psi^{(n)}$ with $\{0, \dots, 0, \Psi^{(n)}, 0, \dots\} \in \mathcal{F}_b(\mathcal{H})$. The same applies to vectors in other inifinite direct sums of Hilbert spaces.

For a subset V of a Hilbert space, we denote by $\mathcal{L}V$ the subspace algebraically spanned by all the vectors of V.

Let $\Omega_b := \{1, 0, 0, \dots\} \in \mathcal{F}_b(\mathcal{H})$, the boson Fock vacuum in $\mathcal{F}_b(\mathcal{H})$. For a subspace \mathcal{D} of \mathcal{H} , we define

$$\mathcal{F}_{b,fin}(\mathcal{D}) := \mathcal{L} \left\{ \Omega_b, \, S_n(f_1 \otimes \cdots \otimes f_n) \middle| n \in \mathbb{N}, \, f_j \in \mathcal{D}, \, j = 1, \cdots, n \right\}. \tag{2.3}$$

If \mathcal{D} is dense, then $\mathcal{F}_{b,fin}(\mathcal{D})$ is dense in $\mathcal{F}_{b}(\mathcal{H})$.

For each $f \in \mathcal{H}$, there exists a unique densely defined closed (unbounded) linear operator a(f) on $\mathcal{F}_{b}(\mathcal{H})$, called boson annihilation operators (its adjoint $a(f)^{*}$ is called a boson creation operator), such that (i) for all $f \in \mathcal{H}$, $a(f)\Omega_{b} = 0$, (ii) for all $n \in \mathbb{N}$, $f_{j} \in \mathcal{H}$, $j = 1, \dots, n$,

$$a(f)S_n(f_1\otimes\cdots\otimes f_n)=rac{1}{\sqrt{n}}\sum_{j=1}^n(f,f_j)_{\mathcal{H}}S_{n-1}(f_1\otimes\cdots\otimes \hat{f_j}\otimes\cdots\otimes f_n),$$

where \hat{f}_j indicates the omission of f_j , and (iii) $\mathcal{F}_{\text{b,fin}}(\mathcal{H})$ is a core of a(f). We have

$$S_n(\otimes^n \mathcal{H}) = \overline{\mathcal{L}(\{a(f_1)^* \cdots a(f_n)^* \Omega_b | f_j \in \mathcal{H}, j = 1, \cdots, n\})},$$
(2.4)

where $\overline{\{\cdot\}}$ denotes the closure of the set $\{\cdot\}$. The set $\{a(f), a(f)^* | f \in \mathcal{H}\}$ satisfies the canonical commutation relations

$$[a(f), a(g)^*] = (f, g)_{\mathcal{H}}, \quad [a(f), a(g)] = 0, \quad [a(f)^*, a(g)^*] = 0$$

for all $f, g \in \mathcal{H}$ on $\mathcal{F}_{b,fin}(\mathcal{H})$.

A similar consideration can be done in the Fermion Fock space $\mathcal{F}_f(\mathcal{K})$. The fermion Fock vacuum Ω_f in $\mathcal{F}_f(\mathcal{K})$ is defined by $\Omega_f := \{1,0,0,\cdots\} \in \mathcal{F}_b(\mathcal{K})$. For a subspace \mathcal{D} of \mathcal{K} , we define

$$\mathcal{F}_{f,\text{fin}}(\mathcal{D}) := \mathcal{L}\left\{\Omega_{\mathbf{f}}, A_n(u_1 \otimes \cdots \otimes u_n) | n \geq 1, \ u_j \in \mathcal{D}, \ j = 1, \cdots, n\right\}. \tag{2.5}$$

If \mathcal{D} is dense, then $\mathcal{F}_{f,fin}(\mathcal{D})$ is dense in $\mathcal{F}_{f}(\mathcal{K})$.

For each $u \in \mathcal{K}$, there exists a unique bounded linear operator b(u) on $\mathcal{F}_{\mathbf{f}}(\mathcal{K})$, called fermion annihilation operators on $\mathcal{F}_{\mathbf{f}}(\mathcal{K})$ ($b(u)^*$ is called a fermion creation operator), such that (i) for all $u \in \mathcal{K}$, $b(u)\Omega_{\mathbf{b}} = 0$, (ii) for all $n \in \mathbb{N}$, $u_j \in \mathcal{K}$, $j = 1, \dots, n$

$$b(u)A_n(u_1\otimes\cdots\otimes u_n)=\frac{1}{\sqrt{n}}\sum_{j=1}^n(-1)^{j-1}(u,u_j)_{\mathcal{H}}S_{n-1}(u_1\otimes\cdots\otimes \hat{u}_j\otimes\cdots\otimes u_n).$$

We have

$$A_n(\otimes^n \mathcal{K}) = \overline{\mathcal{L}\left\{b(u_1)^* \cdots b(u_n)^* \Omega_f | u_j \in \mathcal{K}, j = 1, \cdots, n\right\}}.$$
 (2.6)

The set $\{b(u), b(u)^* | u \in \mathcal{K}\}$ satisfies the canonical anti-commutation relations

$$\{b(u),b(v)^*\}=(u,v)\kappa, \quad \{b(u),b(v)\}=0, \quad \{b(u)^*,b(v)^*\}=0$$

for all $u, v \in \mathcal{K}$, where $\{A, B\} := AB + BA$.

The Fock vacuum in the Boson -Fermion Fock space $\mathcal{F}(\mathcal{H},\mathcal{K})$ is defined by

$$\Omega := \Omega_{\mathbf{b}} \otimes \Omega_{\mathbf{f}}. \tag{2.7}$$

The annihilation operators a(f) and b(u) are extended to operators on $\mathcal{F}(\mathcal{H},\mathcal{K})$ as

$$A(f) := a(f) \otimes I, \quad B(u) := I \otimes b(u), \tag{2.8}$$

where I denotes identity operator.

For a linear operator A, we denote by D(A) its domain. Let $S \in \mathcal{C}(\mathcal{H}, \mathcal{K})$. Then we define

$$\mathcal{D}_{S} := \mathcal{L}\Big\{A(f_{1})^{*} \cdots A(f_{n})^{*}B(u_{1})^{*} \cdots B(u_{p})^{*}\Omega \, \Big| \, n, p \geq 0, f_{j} \in D(S), \qquad (2.9)$$

$$j = 1, \cdots, n, \ u_{k} \in D(S^{*}), k = 1, \cdots, p\Big\},$$

$$= \mathcal{F}_{b,fin}(D(S)) \otimes_{alg} \mathcal{F}_{f,fin}(D(S^{*})), \qquad (2.10)$$

where \otimes_{alg} denotes algebraic tensor product. It follows that \mathcal{D}_S is dense in \mathcal{F} . The following proposition is proved in [4].

Proposition 2.1 There exists a unique densely defined closed linear operator d_S on $\mathcal{F}(\mathcal{H},\mathcal{K})$ with the following properties: (i) \mathcal{D}_S is a core of d_S ; (ii) for each vector $\Psi \in \mathcal{D}_S$ of the form

$$\Psi = A(f_1)^* \cdots A(f_n)^* B(u_1)^* \cdots B(u_p)^* \Omega, \tag{2.11}$$

ds acts as

$$d_{S}\Psi = 0 \text{ for } n = 0,$$

$$d_{S}\Psi = \sum_{j=1}^{n} A(f_{1})^{*} \cdots \widehat{A(f_{j})^{*}} \cdots A(f_{n})^{*} B(Sf_{j})^{*} B(u_{1})^{*} \cdots B(u_{p})^{*} \Omega \text{ for } n \geq 1,$$

where $\widehat{A(f_j)}^*$ indicates the omission of $A(f_j)^*$. Moreover the following (a)-(d) hold:

- (a) $d_S^2 = 0$.
- (b) For each complete orthonormal system (CONS) $\{e_n\}_{n=1}^{\infty}$ of K with $e_n \in D(S^*)$,

$$d_S\Psi = \sum_{n=1}^{\infty} A(S^*e_n)B(e_n)^*\Psi, \quad \Psi \in \mathcal{D}_S,$$

where the convergence is taken in the strong topology of $\mathcal{F}(\mathcal{H}, \mathcal{K})$.

(c) For each CONS $\{\phi_n\}_{n=1}^{\infty}$ of \mathcal{H} with $\phi_n \in D(S)$, we have

$$(\Phi, d_S \Psi)_{\mathcal{F}(\mathcal{H}, \mathcal{K})} = \lim_{N \to \infty} \left(\Phi, \sum_{n=1}^N A(\phi_n) B(S\phi_n)^* \Psi \right)_{\mathcal{F}(\mathcal{H}, \mathcal{K})}, \quad \Phi, \Psi \in \mathcal{D}_S.$$

(d) $\mathcal{D}_S \subset D(d_S^*)$ and

$$d_S^*\Psi = \sum_{k=1}^p (-1)^{k-1} A(S^*u_k)^* A(f_1)^* \cdots A(f_n)^* B(u_1)^* \cdots B(u_k)^* \cdots B(u_p)^* \Omega$$

for vectors Ψ of the form (2.11) with $p \geq 1$. In the case p = 0, we have $d_S^*\Psi = 0$.

A Dirac-type operator on $\mathcal{F}(\mathcal{H},\mathcal{K})$ is defined by

$$Q_S = d_S + d_S^* \tag{2.12}$$

with $D(Q_S) = D(d_S) \cap D(d_S^*)$.

Let A be a self-adjoint operator on a Hilbert space \mathcal{X} . Then there is a unique self-adjoint operator A_n on $\otimes^n \mathcal{X}$ such that $\otimes_{\operatorname{alg}}^n D(A)$ is a core of $D(A_n)$ and, for all $f_j \in D(A)$, $j=1,\cdots,n$, $A_n(f_1\otimes \cdots \otimes f_n)=\sum_{j=1}^n f_1\otimes \cdots \otimes f_{j-1}\otimes Af_j\otimes f_{j+1}\otimes \cdots \otimes f_n$ ([23, §VIII.10, Corollary]). Putting $A_0=0$, one can define a self-adjoint operator

$$d\Gamma(A) := \bigoplus_{n=0}^{\infty} A_n \tag{2.13}$$

on $\bigoplus_{n=0}^{\infty} \otimes^n \mathcal{X}$, called the second quantization of A ([23, §VIII. 10, Example 2], [18, §5.2]). It is easy to show that $d\Gamma(A)$ is reduced by $\mathcal{F}_{\#}(\mathcal{X})$ (# = b, f). We denote the reduced part of $d\Gamma(A)$ to $\mathcal{F}_{\#}(\mathcal{X})$ by $d\Gamma_{\#}(A)$. We put

$$N_{\#} := d\Gamma_{\#}(I), \tag{2.14}$$

called the number operator on $\mathcal{F}_{\#}(\mathcal{X})$.

Let

$$\Gamma_{\#} = (-1)^{I \otimes N_{\#}}. \tag{2.15}$$

We introduce an operator

$$\Delta_S := d\Gamma_{\mathbf{b}}(S^*S) \otimes I + I \otimes d\Gamma_{\mathbf{f}}(SS^*)$$
 (2.16)

acting in $\mathcal{F}(\mathcal{H}, \mathcal{K})$, which is nonegative and self-adjoint (cf. [23, §VIII.10, Corollary]). For a linear operator A on a Hilbert space, we set

$$C^{\infty}(A):=\cap_{n=1}^{\infty}D(A^n).$$

Let

$$\mathcal{D}_{S}^{\infty} = \mathcal{L} \Big\{ A(f_{1})^{*} \cdots A(f_{n})^{*} B(u_{1})^{*} \cdots B(u_{p})^{*} \Omega \Big| n, p \geq 0, \ f_{j} \in C^{\infty}(S^{*}S),$$

$$j = 1, \dots, n, \ u_{k} \in C^{\infty}(SS^{*}), \ k = 1, \dots, p \Big\}.$$
(2.17)

Theorem 2.2 [4]

- (i) The operator Q_S is self-adjoint, and essentially self-adjoint on every core of Δ_S . In particular, Q_S is essentially self-adjoint on \mathcal{D}_S^{∞} .
- (ii) The operator $\Gamma_{\#}$ leaves $D(Q_S)$ invariant and

$$\Gamma_\# Q_S + Q_S \Gamma_\# = 0$$

on $D(Q_S)$.

(iii) The following operator equations hold:

$$\Delta_S = Q_S^2 = d_S^* d_S + d_S d_S^*.$$

Remark 2.1 The operators d_S and d_S^* leave \mathcal{D}_S^{∞} invariant and so does Q_S .

Because of part (iii) of Theorem 2.2, we call the operator Δ_S the *Laplacian* associated with the Dirac-type operator Q_S .

3 Strong anticommutativity of the Dirac-type operators

Let A and B be self-adjoint operators on a Hilbert space. We say that A and B strongly commute if their spectral measures commute. On the other hand, A and B are said to strongly anticommute if $e^{itB}A \subset Ae^{-itB}$ for all $t \in \mathbb{R}$ ([27], [22])¹. It turns out that this definition is symmetric in A and B [22].

For various Dirac-type operators, the notion of strong anticommutativity plays an important role ([7], [8], [10], [11]).

For each $S \in \mathcal{C}(\mathcal{H}, \mathcal{K})$, the operator

$$L_S := \left(\begin{array}{cc} 0 & S^* \\ S & 0 \end{array}\right) \tag{3.1}$$

acting in $\mathcal{H} \bigoplus \mathcal{K}$ is self-adjoint. This operator is an abstract Dirac operator on the Hilbert space $\mathcal{H} \bigoplus \mathcal{K}[26, \text{ Chapter 5}]$.

The strong anticommutativity of Q_S and Q_T $(S,T\in\mathcal{C}(\mathcal{H},\mathcal{K}))$ is characterized as follows.

Theorem 3.1 Let $S, T \in \mathcal{C}(\mathcal{H}, \mathcal{K})$. Then Q_S and Q_T strongly anticommute if and only if L_S and L_T strongly anticommute. In that case, $S \pm T \in \mathcal{C}(\mathcal{H}, \mathcal{K})$ and $Q_{S\pm T} = Q_S \pm Q_T$.

This theorem is one of the main results of the paper [15], which establishes a beautiful correspondence between the strong anticommutativity of L_S and L_T and that of Q_S and Q_T .

To prove Theorem 3.1, we need some fundamental facts in the theory of strongly anticommuting self-adjoint operators [27, 22] as well as its applications, together with the following lemma. For the details, see [15].

Lemma 3.2 Let $S,T \in \mathcal{C}(\mathcal{H},\mathcal{K})$. Suppose that L_S and L_T strongly anticommute. Then the following (i)-(v) hold:

- (i) $S \pm T \in \mathcal{C}(\mathcal{H}, \mathcal{K})$ and $(S \pm T)^* = S^* \pm T^*$.
- (ii) |S| and |T| strongly commute.
- (iii) $|S^*|$ and $|T^*|$ strongly commute.
- (iv) $D(S^*S) \cap D(T^*T) \subset D(T^*S) \cap D(S^*T)$ and, for all $f \in D(S^*S) \cap D(T^*T)$,

$$(T^*S + S^*T)f = 0.$$

(v) $D(SS^*) \cap D(TT^*) \subset D(TS^*) \cap D(ST^*)$ and, for all $u \in D(SS^*) \cap D(TT^*)$,

$$(TS^* + ST^*)u = 0.$$

¹The authors of [27] and [22] call this notion simply anticommutativity, but, to be definite, we call it strong anticommutativity.

In terms of S and T, a necessary and sufficient condition for L_S and L_T to strongly anticommute is given as follows.

Proposition 3.3 Let $S, T \in \mathcal{C}(\mathcal{H}, \mathcal{K})$. Then L_S and L_T strongly anticommute if and only if the following (i) and (ii) hold:

- (i) $S \pm T \in \mathcal{C}(\mathcal{H}, \mathcal{K})$ and $(S \pm T)^* = S^* \pm T^*$.
- (ii) For all $f, g \in D(S) \cap D(T)$ and $u, v \in D(S^*) \cap D(T^*)$,

$$(Sf, Tg) + (Tf, Sg) = 0, \quad (S^*u, T^*v) + (T^*u, S^*v) = 0.$$

4 Application to constructing representations of a supersymmetry algebra

We consider Fock space representations of the algebra $\mathcal{A}_{\text{SUSY}}$ generated by four elements Q_1, Q_2, H, P with defining relations

$$Q_1^2 = H + P, \quad Q_2^2 = H - P, \quad Q_1 Q_2 + Q_2 Q_1 = 0.$$
 (4.1)

This algebra is called a *supersymmetry algebra*, which arises in a relativistic SQFT in the two-dimensional space-time ([19], [13]). The elements H, P and Q_j (j = 1, 2) are called the *Hamiltonian*, the *momentum operator* and the *supercharge*, respectively.

We recall a definition from [13]. Let \mathcal{F} be a Hilbert space, \mathcal{D} a dense subspace of \mathcal{F} , and H, P, Q_1, Q_2 be linear operators on \mathcal{F} . We say that $\{\mathcal{F}, \mathcal{D}, H, P, Q_1, Q_2\}$ is a symmetric representation of $\mathcal{A}_{\mathrm{SUSY}}$ if H, P, Q_1 and Q_2 are symmetric and leave \mathcal{D} invariant satisfying (4.1) on \mathcal{D} . A symmetric representation $\{\mathcal{F}, \mathcal{D}, H, P, Q_1, Q_2\}$ of $\mathcal{A}_{\mathrm{SUSY}}$ is said to be integrable if (i) H, P, Q_1 and Q_2 are essentially self-adjoint (denote their closures by $\bar{H}, \bar{P}, \bar{Q}_1$ and \bar{Q}_2 , respectively); (ii) $\{\bar{H}, \bar{P}, \bar{Q}_1\}$ and $\{\bar{H}, \bar{P}, \bar{Q}_2\}$ are families of strongly commuting self-adjoint operators, respectively; (iii) \bar{H} and \bar{P} satisfy the relativistic spectral condition

$$\pm \bar{P} \le \bar{H}. \tag{4.2}$$

Suppose that L_S and L_T strongly anticommute. Then, by Lemma 3.3(ii) and (iii), S^*S and T^*T strongly commute, and SS^* and TT^* strongly commute. Hence $S^*S + T^*T$ and $SS^* + TT^*$ are nonnegative, self-adjoint, and $S^*S - T^*T$ and $SS^* - TT^*$ are essentially self-adjoint. Therefore we can define self-adjoint operators

$$H_{S,T} := \frac{1}{2} \{ d\Gamma_{\mathbf{b}}(S^*S + T^*T) \otimes I + I \otimes d\Gamma_{\mathbf{f}}SS^* + TT^*) \},$$
 (4.3)

$$P_{S,T} := \frac{1}{2} \left\{ d\Gamma_{\mathbf{b}} (\overline{S^*S - T^*T}) \otimes I + I \otimes d\Gamma_{\mathbf{f}} (\overline{SS^* - TT^*}) \right\}^{-}$$

$$(4.4)$$

where for a closable linear operator A, \bar{A} (or A^-) denotes its closure. Note that $H_{S,T}$ is nonnegative, but, $P_{S,T}$ may be neither bounded below nor bounded above.

For a self-adjoint operator A, we denote by E_A its spectral measure. Let

$$\mathcal{D}_{S,T} := \mathcal{L}\{E_{|Q_S|}([a,b])E_{|Q_T|}([c,d])\Psi|\Psi \in \mathcal{F}(\mathcal{H},\mathcal{K}), 0 \le a < b < \infty, 0 \le c < d < \infty\}. \tag{4.5}$$

We can prove the following theorem (for the proof, see [15]).

Theorem 4.1 Let $S,T \in \mathcal{C}(\mathcal{H},\mathcal{K})$ and suppose that L_S and L_T strongly anticommute. Then $\{\mathcal{F}(\mathcal{H},\mathcal{K}), \mathcal{D}_{S,T}, H_{S,T}, P_{S,T}, Q_S, Q_T\}$ is an integrable representation of \mathcal{A}_{SUSY} .

We give only one basic example from SQFT (for other examples, see [19], [4]).

Example Let $\mathcal{H} = \mathcal{K} = L^2(\mathbb{R})$ and $\mathbb{R} \ni p \to \omega(p)$ be a nonnegative function on \mathbb{R} which is Borel measurable, almost everywhere (a.e.) finite with respect to the Lebesgue measure on \mathbb{R} , and satisfies

$$|p| \le \omega(p)$$
, a.e. $p \in \mathbb{R}$.

Let

$$\nu(p) = \sqrt{\lambda p + \omega(p)}$$

with $\lambda \in [0,1]$ (a constant parameter) and $\theta(p)$ be an a.e. finite real-valued Borel measurable function on \mathbb{R} . Define the operators S and T on $L^2(\mathbb{R})$ to be the multiplication operators by the functions

$$S(p) := i\nu(p)e^{i\theta(p)}, \quad T(p) := \nu(-p)e^{i\theta(p)},$$

respectively. Then it is easy to see that S and T satisfy the conditions (i) and (ii) in Proposition 3.3 with $D(T) = D(S) = D(S^*) = D(T^*)$ and

$$S^*S = SS^* = \lambda p + \omega, \quad T^*T = TT^* = -\lambda p + \omega,$$

$$S^*T = TS^* = -i\sqrt{\omega^2 - \lambda^2 p^2}, \quad T^*S = ST^* = i\sqrt{\omega^2 - \lambda^2 p^2}.$$

Hence, by Proposition 3.3, L_S and L_T strongly anticommute. Therefore, by Theorem 4.1, $\{\mathcal{F}(L^2(\mathbb{R}), L^2(\mathbb{R})), \mathcal{D}_{S,T}, H_{S,T}, P_{S,T}, Q_S, Q_T\}$ with these S and T is an integrable representation of \mathcal{A}_{SUSY} . We have

$$H_{S,T} = d\Gamma_{b}(\omega) \otimes I + I \otimes d\Gamma_{f}(\omega),$$

$$P_{S,T} = \lambda \overline{\{d\Gamma_{b}(p) \otimes I + I \otimes d\Gamma_{f}(p)\}}.$$

Note that $H_{S,T}$ and $P_{S,T}$ are independent of θ .

If $\omega(p) = \sqrt{p^2 + m^2}$ with a constant $m \ge 0$, $\lambda = 1$ and $\theta = 0$, then $H_{S,T}$ and $P_{S,T}$ are respectively the Hamiltonian and the momentum operator of a free relativistic SQFT in the two-dimensional space-time, called the N = 1 Wess-Zumino model (cf. [19]).

References

- [1] Arai, A.: Path integral representation of the index of Kähler-Dirac operators on an infinite dimensional manifold, J. Funct. Anal. 82 (1989), 330-369
- [2] Arai, A.: Supersymmetric embedding of a model of a quantum harmonic oscillator interacting with infinitely many bosons, J. Math. Phys. 30 (1989), 512-520
- [3] Arai, A.: A general class of infinite dimensional Dirac operators and related aspects, in "Functional Analysis & Related Topics" (Ed. S. Koshi), World Scientific, Singapore, 1991

- [4] Arai, A.: A general class of infinite dimensional Dirac operators and path integral representation of their index, J. Funct. Anal. 105 (1992), 342-408
- [5] Arai, A.: Dirac operators in Boson-Fermion Fock spaces and supersymmetric quantum field theory, J. Geom. Phys. 11 (1993), 465-490
- [6] Arai, A.: Supersymmetric extension of quantum scalar field theories, in "Quantum and Non-Commutative Analysis" (Ed. H.Araki et al), Kluwer Academic Publishers, Dordrecht 1993
- [7] Arai, A.: Commutation properties of anticommuting self-adjoint operators, spin representation and Dirac operators, *Integr. Equat. Oper. Th.* 16 (1993), 38-63
- [8] Arai, A.: Properties of the Dirac-Weyl operator with a strongly singular potential, *J. Math. Phys.* **34** (1993), 915-935
- [9] Arai, A.: Characterization of anticommutativity of self-adjoint operators in connection with Clifford algebra and applications, *Integr. Equat. Oper. Th.* 17 (1993), 451–463
- [10] Arai, A.: On self-adjointness of Dirac operators in boson-fermion Fock spaces, *Hokkaido Math. Jour.* 23 (1994), 319-353
- [11] Arai, A.: Analysis on anticommuting self-adjoint operators, Adv. Stud. Pure Math. 23 (1994), 1-15
- [12] Arai, A.: Scaling limit of anticommuting self-adjoint operators and applications to Dirac operators, *Integr. Equat. Oper. Th.* 21 (1995), 139-173
- [13] Arai, A.: Operator-theoretical analysis of a representation of a supersymmetry algebra in Hilbert space, J. Math. Phys. 36 (1995), 613-621
- [14] Arai, A.: Supersymmetric quantum field theory and infinite dimensional analysis, Sugaku Expositions 9 (1996), 87-98
- [15] Arai, A.: Strong anticommutativity of Dirac operators on Boson-Fermion Fock spaces and representations of a supersymmetry algebra, to be published in *Math. Nachr.*
- [16] Arai, A. and Mitoma, I.: De Rham-Hodge-Kodaira decomposition in ∞-dimensions, Math. Ann. 291 (1991), 51-73
- [17] Arai, A. and Mitoma, I.: Comparison and nuclearity of spaces of differential forms on topological vector spaces, J. Funct. Anal. 111 (1993), 278-294
- [18] Bratteli, O. and Robinson, D. W.: "Operator Algebras and Quantum Statistical Mechanics 2", Second Edition, Springer, Berlin, Heidelberg, 1997
- [19] Jaffe, A. and Lesniewski, A.: Supersymmetric quantum fields and infinite dimensional analysis, in "Nonperturbative Quantum Field Theory" (Ed. G.'t Hooft et al), Plenum, New York, 1988

- [20] Kupsch, J.: Fermionic and supersymmetric stochastic processes, J. Geom. Phys. 11 (1993), 507-516
- [21] Léandre, R. and Roan, S. S.: A stochastic approach to the Euler-Poincaré number of the loop space of a developable orbifold, J. Geom. Phys. 16 (1995), 71–98
- [22] Pedersen, S.: Anticommuting self-adjoint operators, J. Funct. Anal. 89 (1990), 428-443
- [23] Reed, M and Simon, B.: "Methods of Modern Mathematical Physics Vol.I: Functional Analysis", Academic Press, New York, 1972
- [24] Reed, M. and Simon, B.: "Methods of Modern Mathematical Physics Vol.II: Fourier Analysis, Self-adjointness", Academic Press, New York, 1975
- [25] Samoilenko, Yu. S.: "Spectral Theory of Families of Self-Adjoint Operators", Kluwer Academic Publishers, Dordrecht, 1991
- [26] Thaller, B.: "The Dirac Equation", Springer, Berlin Heidelberg, 1992
- [27] Vasilescu, F.-H.: Anticommuting self-adjoint operators, Rev. Roum. Math. Pures Appl. 28 (1983), 77-91