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Chauchy problem of nonlinear wave equations |
with small and smooth initial data

K - I | 9\%3535 (Hideo Kubo)

In this note, we consider Chauchy problem for

(0.1) D' = 02u' — AW = Fi(u,0u,0%u) in R" x (0, oo),
(0'2) u (xa 0) - Eft(x)) atu (x7 0) =£&g (ﬂ:) in Rn:

where i = 1,---,m, u'(z,t) is a real valued unknown function, ¢; > 0 and £ > 0. Be31des,
Fie C’°°(R(“+1)m x RHP*my and fi ¢¢ € C(RM). We also denoted u = (uly -, u™)
and du, 0*u stand for the first and second derivatives with respect to 8, = 8/t ( ),
0; =0 / 0z; (j =1,---,n). Roughly speaking, we would like to compare the behavior of the
solutlon u(z,t) to the problem (0.1) and (0.2) with that of ue(z,t) = ('uo(:t t),- -, ult(z,t)),
which is the solution to the homogeneous wave equatlon

(0.3) | Duuf(z,t) =0 in R™ x (0, 00),

satisfying (0.2), provided the parameter ¢ is sufficiently small. fn=2o0rn = 3, the
L*®-norm of u}(z,t) can be controled as follows:

(0.4) b (2, )] < Ce(1+7+8)"F (1 + |at — )T,

provided f*, ¢* € C§°(R™). In the following, we shall only consider the case where n = 2
or n = 3. To my knowledge, the imprtance of the factor (1 + |¢;t — r|) is firstly pointed
out by Professor F. John in [17]. And the factor also plays an essential role in our analisis.
We divide our argument into two parts. First one is concerned with the quasilinear case.
This part is a collabolation work with Professor A. Hosiga in [15]. While the second part,
which is a joint work with Professor M. Ohta in [30], is concerned with the semilinear case.
The author wishes to be thankful to Professor R. Agemi and Professor K. Kubota for their
valuable comment.
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1 Quasilinear Case

In this section we study the quasilinear case. Namely, we assume

(1.1)  F' = F(0u,0%) = Z Z 2°(0u) 0,054 + K;(Bu),

I=1~4,6=0
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where H®, K; € C®°(R™)m) satisfy |

(1.2) HY(8u) = O(|6ufP™), Ki(Ou) = O(|6ulP) near du=0.

Here p is an integer with p > 1. In order to derive an energy %tiinaﬁe, we need to assuﬁle
13 HEP(9u) = H*(0w) = HI(0u). |

Since the existence and the uniqueness of the local smooth solution of (0.1) and (0.2)
are already known (see e.g. S. Klainerman [23]), we aim at the global solvbility of the
problem. For this purpose, we shall establish a uniform a priori estimate of a suitable
weighted L°-norm [u(t)]y for some large integer N. More precisely, we wish to prove
that if [Bu(t)]y < 3Mye for 0 < ¢ < T, then we must have [Gu(t)]y < 2Mye for 0 <¢ < T,
provided ¢ is sufficiently small. Here T is a given positive number and My is a constant
depending only on the initial data f*, g* and the functions H‘Y , K;. Once we could obtain
the above proposition, we get a global solution due to the blow—up criterion. (See e.g.
[34]). Althogh our basic strategy to get a uniform a priori estimate is based on the method
developed by Professor S. Klainerman in [26], we need some modification to handle the case
where the system (0.1) has different propagation speeds.

Notations. We introduce the following vector fields:
(1 4) = (Lo, -+ o) = (8, Q;S) '
where No-*n+ﬂ'—"—12+1 and

0= (60) e ) n), : (Qi,j)7 S = tat + Tar )
Bo=0, 0;=0/3; (1<j<n), Qj=20;—12;0(1<i<j<n)

Remark. In our analysis, Q and S will play a crucial role. Indded, S will be used in (1.39)
efeectively and  will be used in (1.32), (1.37) and (1.38).

For a vector valued function u(z,t) = (ul(z,?),- - -, u™(z, 1)), we set

@l = 3 ST Dl

- Jal<k =1
luz, )l = D X Tz, 1),
la|<k I=1
where k is a nonnegative integer, a = (ag,- -, ang) is a multi-index, I'* = T3 .. TN and

la| = ag + - - - + an,. Moreover, we shall use the following weighted L*°-norm:

(L5) B = 3 3wl [ B Bl

lal<k =1 -
where wj is a weight function associated with the I-th component of u defined by

w(rt) = (1+7)F (1 +t+1)"(1+|at —r))F for r>0,t>0,
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where 0 < y < (n — 1) /2. Moreover, we also use

Il = s (@l iy = sup [u(e)

Energy Estimates I. In order to assure the hyperbohclty of the system (0.1), we
will consider the following assumption on the solution u* € C*(R? x [0, T)):

- (1.6) sup |Ou(z, Bl < 6 for0<t< T

where k a nonnegative integer and (0 < 6 < 1) is a real number. Note that the following
commutator relations hold: :

(L7 [0 =—260,0; for o=0,---,No, i =1,-

Here [, | denotes the usual commutator of linear opera.tors and 4, is Kronecker s delta.
Therefore, if u* satisfies O;uf = F*, then we have »

(1.8) oir P=) GIF

b<a

for some suitable constant Cy. Then following a standard argument, we obtain the energy
~ estimate as follows. (For the details, see e.g. the proof of Proposition 5.1 in [15]).

Proposition 1.1  Let uf € C°°(R2 X [0,T)) be a solution of (0.1) and (0.2). Suppose
that (1.1)~(1.3) hold. Then there is a sufficiently small positive number & such that if (1.6)
with k = [(N +1)/2] holds, then we have for 0 <t < T

] .
(1.9) |0u(t)||n < Cn||0w(0)]||x exp [CN,/(; { sup |Ou(z, 3)|[%|~_1]}p_1ds )

Following a formal argument for the moment, we will introduce a “critical exponent” of
the nonlinerlity F*(du, 8%u) . Having (0.4) in mind, we suppose that

(1.10) - JBu(®, gy S C(L+E+1)7F for (z,t) € R” x (0,00)

holds. Then we have
/ {swp Iau(a: )|pga P lds < © / (1+s) ——fp-”ds

Therefore, if (n 1)(p—1)/2>1,ie,p>1+2/(n—1), we get a bound of |0u(t)||n from
(1.9). Such a bound indicates the existence of a global solution to the problem (0.1) and
(0.2). Hence it is interesting to consider whether or not a global solution to the problem
exists when p = p.. Here p. is a critical exponent defined by

N (2 (n=3),
(1.11) poi=1+ 2 _ {
, 3 (n=2).

n—1
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Known results. The following results assure that the number p. defined by (1.11)
has real mea.mng ‘Let m = 1 or the system (0.1) has common propagation speeds; i. Le.,
€1 = +++ = Cm. Suppose that (1.1)—(1.3) hold.

If p > P, then [Small Data Global Existence] holds. Namely, for any f*, g* € C*(R"),
the problem (0.1) and (0.2) has a smooth global solution for sufficiently small e. Moreover,
if p = p,, then [Small Data “Almost” Global Existence] holds. Namely, for any f*, ¢* €
C*(R™), the problem (0.1) and (0.2) has a smooth local solution whose life span is estimated
by exp(C/ePe1) from below for sufficiently small €. (See F. John and S. Klainerman [21],
S. Klainerman [25] and M. Kovalyov [27], for instance).

On the other hand, if 1 < p < p., then [Small Data Blou-up] holds. Namely, [Small
Data Global Existence] dose NOT holds. (See R. Agemi [1], S. Alinhac [4], L. Hérmander
[12], A. Hoshiga [14] and F. John [18)).

Furthermore, in the critical case p = p., the following interesting results are known. If
the nonlinearity has a special form, a global solution of (0.1) and (0.2) exists, instead of an
almost global solution. (See D. Christodoulou [6], P. Godin [11], A. Hoshiga [13], F. John
[19], S. Katayama [22] and S. Klainerman [26], for instance). We shall call the restriction
on the nonlinearlities null condition, according to S. Klainerman [24]. We shall give its
definition for the 2-dimensional case in (1.43) below.

We now turn our attention to the case where p = p., m > 2 and the propagation
speeds are different from each other. This case was studied by M. Kovalyov in [30] and
R. Agemi and K. Yokoyama in [3]. They found some nonlinearities, which do not satisfy
null condition (1.43), and proved the existence of the global solution to (0.1) and (0.2). In
the following, we shall investigate to find a wider class of nonlinearity which garantees the
global solvability of the problem (0.1) and (0 2). (See also (1.42) below.)

Basic estimate. Since one can treat the case where the system (0.1) has common
propgation speeds less hard, we shall consider the case where the speeds are disitinct.
Namely, we assume

(1.12) CL>C> > Cm.

Under this situation, we prepear basic estimates of the solution to the inhomogeneous wave
equations as in Proposition 1.2 below, so that we will be able to get a variant of (1.10).
In what follows, we restict ourselves to the case where n = 2. (For the 3-dimensional case,
see K. Yokoyama [41]).

. We strat with splitting the region (0, 00) x (0,00) for each i (i =1,---,m) as follows:
‘ 1 ¢ 1 C; '
A; = {(r,t) € (0,00) X (0,00): =(2+ —)r<ct<z(2+—)r and r>1}
' 3 Gi-1 3 Cit1 _

and A¢ = (0,00) X (0,00) \ A;, where we have set ¢g = 4¢; and cmy1 = ¢m/4. Because of
(1.12), this definition is meaningful. In particular, we have : '

(1.13) - AN =0 ifi#l

Notice that 1+ is equivalent to 1+t for (r,t) € A;, while so is 1+|cit—r| for (r,t) € A¢.



95

Next we introduce the following weight functions:
(L+A+8)(L+ A= cjsl) i (\8) €Aj, §#4,
2D 8) =4 L+A+a)* 1+ A—cs)™* i (\s) €A,
Vs + 0T i (5) € (0,00) x (0,00) \UpiA,
and \ | | |
A+A+s)1+A—csl) i (As) €Ay,
z(A,8) = {

(LN +s+ 02T i (A,5) € (0,00) x (0,00) \ URL, Ay,
where 0 < g < 1 and + is the number in the definition of wy(r,t). Then we have

Proposition 1.2  Let u(z,t) be a solution to O;u = 8°F with the zero initial data, where
b is a multi-index with [b| = 1.

(4) Let (|z],t) € A{ and t <T. Then we have
(1.14) wi(r, H)u(z, )| < CMy(F)(r, 1),

where w;(r,t) is definded in (1.5) and we have set for a nonnegative integer k

Mi(F)(r,t) = 3. sup sup IIyIBZ(IyI,S)F“F'(y, s).

|a|sk 0<s<tyeR?
(i) Let (:c t) e RZ x [0, T) Then we have
(1.15) wi(r, O)|u(z, )| < CM(')(F)(r, £,
where we have s‘et for a positive integer k

MP(F)(r,t) = Y sup supIlylzz("(lyhS)F“F'(y»s)l

lal<k <s<tye

Outline of the proof: Without loss of genera.hty, we may assume ¢; = 1. Then if
F € C*(R? x [0,T)), we have -

F(y, s)
— |z — yl?

L
(1.}6) u(e,t) = 5= /|w—y15t dy.

Switching to polar coordinates as = (rcosd,rsind) and y = (A cos(H + 1), Asin(@ + ¥))
as in Section 2 in [27]; we have _

(1.17) wz,t) = 51-7; / /D Mdxds [_ ¥ PFOE, 5)Kydp
| +§1;l_-H(t-r) / L , Mdxds [ " RO, 5)Kydo,
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where H is the Heviside function and we have set

¢ = (cos(8+1),sim(0+9)), o
K, = KI(A’ 8, "p; Ty t) = {(t - 3)2 - T2 - Az + 27’)\008"/)}—%3 .

20 \2 _ (f — q)2 ,
r+A - s)] for (\,s) € D.

i

¢ = () s;r,t) = arccos [ 5

Moreover, the domains D' and D" are defined as follows:

’

D = {(\s)€(0,00)x (0,00): 0<s<t A <A<,
D' = {(\s)€(0,00)x(0,00): 0<s<t—7, 0<A<A},

where _
(1.18) A=lt—s—r|, Ap=t—s+r

The key point to get such estimates as in Proposition 1. 2 is to integrate by parts with
respect to A and s. Following [27] and (3], we shall sketch this process briefly. To begin
with, we split the regions of integration D' and D" into subregions as follows:

D' = blue Uwhite, D" = blackUred
(1.19) blue={(s, ) €D : Ao <A< A +6 or M= <A<M}
black={(s,\) €D': A =86 <A<A or 0<A<Léb} '
where we have set § = min{r,1/2} and 8, = min{(% —1)/2,1/2}. Notice thta white is
empty, if 0 <7 < 1/2 and that red is empty, f 0 <t—r <1

Let 8 = 8, (a=0,1,2) in (1.17). Then, according to the above decompositions, we
have o ,

(120)  2ru(s,t) = / /u adrds [ (0.F)0¢, 9)Kudw
el
+H('l"— —é)jz_:%./white

FH(t - r) / /biack AdAds L :(6,,F)(A§, Ky
+H(t—r—1) / / _Mdds [_ :(aaF)(,\g; s)Kqdp,

1
AdAds /0 (BuF)(\E;, 8) Kadr

where we have changed the variable as 1 = ¥ in the second term and set

¥ = WU(\s,T;rt) = arccos[l — (1 — cos p)7],
g, = Ej(\ s, t) = (cos(6+ (=1)W),sin(8 + (=1 ¥)), .
K = Kahamint)={2rr(1l—n)2- 1 -csgr)} L.

Carrying out the integration by parts in the second and fourth rterms, we get the following:
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Lemma 1.1 Let u(z,t) be the solution to O;u = O, F with the zero initial data. If
F € C*(R? x [0,T)), then |u(t, z)| is dominated by the followings: :

L@ = [ s [ |@.F)0 5)|Kid,

BF)@d) = [ A / IF(AE;, s)ledT,,

BE)@0) = [[  dxds [1FOS; 8|+ (QF)OE; 8)l} Kadr,
LF)at) = [[ s [ FOE;, HIBLK:| + |03 K|,

BF)at) = [[ s [ QF)OE;, 9) 1Kz {|8.9] + |05 T }dr,
ChE@t) = [ dds [ @), ) Kady,

B(F)(z,t) = /8 O [_ : IFO, 8)| Kdy,
J[ s [ UFO& o)l +I@F)08, )},
Ju(F)(z,t) = f/ Ad)ds /W‘IF(/\g,s)l{IB,KlI+I6AK1|}dv/j.

I

J3(F)(.’li,t)

Proof: It is easy to see that the first and second terms in (1. 20) are dominated by 11 (F)
~ and J;(F), respectively. Since

(VEYOE, 5) = E0\(F O, ) — S @F)(,0), €4 = (sin(0+ ) —cos0 +),

we find that the fourth term in (1.20) is dominated by J; (F) (1=2,3,9), by integration
by parts.
To deal with the second term in (1. 20) we use the following 1dent1t1es

(BF)(AE;, 8) = B,(F(AEy, ) — (—1)Y8,8(UF)(AE;, s), ) |
(VF)Oj, ) = B(O(F(NE;, 9) - (-1 RU(QF) (A, 5)) — L (QF) (O, ),

where Ej = (sin(f + (—1)9), — cos(6 + (— 1)7%)). Agam by integration by parts, we find

that the. second term is dominated by I;(F) (j =2,---,5). The proof is ‘complete.
For the further details of the proof of Propos1t10n 1. 2, see the proof of Proposition 4.3
in [15]. o

Here we prepear the following proposition for the latter use. For the proof, see e. g the
proof of Proposition 4.4 in [15].

Proposition 1.3  Let u(x,t) be the solution to Du = F with the zero initial data. Let
0 < u < 1/2. Then we have for (|z|,t) € A; witht <T

(1.21) - I+t +r)Hu(z,t)] < CMO(F)('r,.t),
where My(F)(r,t) is defined in (1.14).
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‘ Appllcatlon of the Basic estimates. We now tern our attention to the ariginal
problem (0.1) and (0.2). Since p. = 3 for n = 2 and the higher order terms in F*(du, 3*u)
are harmless as long as we consider the small solution, we will assume that F* is cubic with
respect to Ou and 8%u, namely,

m
(1.22) F{(0u,0%) = Y - Z ;’;‘,’gfaaufa,,u’“aﬁaau'
Jki=1 a,ﬂ,'y,6—0
' m

+ }: Z Bf;g?aaujagukﬂ o,

Jikl=1 a,B,y=0

where A“ﬁ"5 and B“k, are constants and Afﬁ, satisfy

6 ] 6
0.2 A = A = ASgl

As we have mentldned before, in order to get a global solution, we need to establish
a uniform @ priori estimate of [Gu(t)]n for some large integer N. By (1.7) and (0.1),
I20bu’(z, t) satisfies .

(1.24) O;r0bui(x, t) = ﬁ'*’(au du) in.R2 x (0, T),

where we have set F(0u, 6%u) = ¥ 4<, Cop0TeF (8u, 82u) and a, , band d are multi-indices.
Moreover, the initial values of ['*8°uf(z,t) are determined by ¢, f and ¢ (j =1,---,m)
by using the equation (0.1). For instance, when a = 0 and 8” = 8,, we have

(0)(2,0) = eg'), (0Fu)(z,0) = ectAS (@) + F¥(Ou, Pu)(3,0).

We can solve the second equation with respect to (B2u?)(z,0), if 6 in (1.6) is sﬁﬂ"lciently
small. ' '
Based on this, we decompose I'*8%u(z, t) as follows:

(1.25)I‘“65u(93,t) ug(z,t) + ui(z,t) with o= (uo, cou™), w = (v, u),

where u! is a solution to Dui = F¥(Ou, 62u) with the zero initial data, while u} is a
solution to Ojuf = 0 and uj(z,0) = ([*8°u)(z,0), uf(x,0) = (8I*0%u)(x,0). Since
fi(z), ¢°(z) € CP(R?), the initial values of 4 are also belongs to Cg°(R2). Therefore,
when |a| + |b] < N, we have

- (1.26)  |ub(z,t)] < MN6(1+t+r)“’(1+ leit — 7))~ i for (z, t) eR?x [0, oo),

where My depends on L'-norms of f7 , g7 and their ﬁmte times derlva.tlves (See Lemma
1 in R.T. Glassey [10], and also Lemma 4 in [27] and [32]).
Then we have the following L*-L* estimates.

Propositivon 1.4 Letu' € C°(R? x [0,T)) be a solution of (0.1) and (0.2). Suppose
that (1.22) and (1.23) hold. Let My be the constant in (1.26).

(i) There is a sufficiently small positive number § such that if (1.6) with k = [(N +2)/2]
holds, then we have for (|z|,t) € AS witht < T and |a| < N

(1.27) wi(|z), t)|T°0u (2, t)] < Mne + CNlau]fﬂg-z],t||3ul|N+4,t-
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(n) Let 0 < p < 1/2. There is a sufficiently small positive number § such that if (1.6) 'wzth
= [(N +1)/2] holds, then we have for (|m| t) € A; witht <T and |a] < N,

(1.28) C(1+t+ r)“ll"“u’(x t)] < Mye+ CN[au][_i] Noul|nyags.

Proof: Pirst we shall show (1.27). Using the decomposition (1. 25) with |b] = 1 and the-
estimates (1.26) and (1.14), we have

(1.29) w;(r, t)|T0u’(z, t)| < Mye + CyMg1(FH)(r,t) for (|z|,t) € AS with t < T
Therefore, it suffices to show :
(1.30) My11(F*)(r,t) < CN[au]?&;tz],t”a“”NH,tf

It follows that for la| <K N+1

: o m 1
(1.31)  [M*Fy,8)| <C Y 77— [0u(s) ] IT*9u (y, s
2 G (a9 s 3 (00, 9)L
Employing the following imbedding theorem

(1.32) i@ < X ISl for z € R?
la|<2
(for the proof, see e.g. Lemma 6 in [27]), we get (1.30).
Moreover, we can prove (1.28) in a similar fashion, if we use (1.21) 1nstead of (1.14).
The proof is complete. 0

Now we are in a position to derive a L®-L*® estimate for any (x t) € R? x [0,7).
By (1.25) with [b] = 1, (1.26) and (1.15), it suffices to control MN+1(F‘)(1', t). When
(lyl, s) € A¢ with s < t, we have from (1.31) and (1.32)

(1.33) WOy, )T F(y, 6)| < On[oulfvga 1 Oullvrae

In order to deal with the case where (|y|, s) € A; with s < ¢, we divide F’ into N* and R
as follows: '
2 : 2

(1.34) N¥(0u,8%u) = 3 AfC0.4'05u'0,05u'+ Y. BE0,u'dpuid
a,B,7,6=0 a,B,7=0

(1.35) R'(0u,8%u) = F'(Ou,8%u) — N*(0u, Pu).
o Firstly, we shall show for |a]| < N +1 o
(1.36) [y122(Iyl, 8)IT°R¥(y, 5)| < On6*Mue + Cn[Bulfsa) 100l w10,

provided (1.6) with & = [(N + 4) /2]. Since there is at least one index among j, kandl
which does not coincide with ¢ in each term of R?, we have

MR@s) < € Y Y a9 ey 3 0w (y, )

(Gik)#(y3) =1 ("”ka)(lyl; Bi<lal+1

1 Bu i, N
" "Z“ o (9 w9 9) g, 0 IO )
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By (1.32), (1.6) with k = [(N + 2)/2] and wi(|yl, s) > |y|/2, we get for |a| < N+1

w20y, ) TRy, 8)| < Clou(s) gz |Bu(s)lwsa + O T wllgl, )00y, )l

[bl<N+2
Moreover, since A; C Af by (1.13), we get from (1.27), |
wi(lyl, 8)IT°0u'(y, )| < Mye + CnlOulfpgay I0ull v

for (Jy|,s) € A w1th s<tand |b| < N +2, prov1ded (1.6) with & = [(N +4)/2]. Hence,
we get (1.36).
In order to treat N*, we need a concept of “Null condition” below.

Null condition. The idea to deal with N is to decompose 8,u* as follows:

(1.37) ot = ﬂa,u*—””—jsw,

| _ T r
(1.38) Syt = ﬂa,u*+-$—;9u‘
: | r r
(1.39) oot =

where r = |z|, Q = 210 — 20y, S = t8; + r0, and & = 8.
First we handle the last trems in the right hand saide of (1.37), (1.38) and (1.39). If we
set for a nonnega.tlve integer k&

- (1.40 (u(t)e = su Il (x, t
(1.40) | ( N = IZ; |¢§<:k .. (:Ic),t)eA.}l (2:t)],
we see that those terms are dominated by

Cl+t+r)Hu(t))y for (|z|,t) € A

Since (u(t)); can be estimated by using (1.28), we get an additional decaying factor (1 +
t+ 7).
Nest we consider the second trem in the right hand saide of (1.39). Since

et =7 _ Clun(r,)*
t T (14t+r)?

for (|z|,t) € A,

we get a good decaying factor (1 +t+r)~! instead of (1 + |cit — r|)~! from this term.
From the above consideration, we can approximate 9,4’ as follows:

(141) : - 6aui ~ waarui’
where we have set wp = —¢;, wi = 71/r and wy = z2/r. Substituting (1.41) into (1.34), we -
get ' '

2

2 ‘ :
NOu, %) ~ Y AR wawpwaws(0:uS) 202U + Y B woawsw, (8’
,3,7,6=0 a,f,y=0
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In order to kill these terms, we naturally arrive at the following condition.

Definition. We fix i (i =1,---,m). When (1.12) holds, we say that F* satisfies the- “Null
condition”, if

2

(1.42) Z A XXX, Xs=0 and Y BIX,X5X,=0
o,B3,7,6=0 a,3,7=0 ,
hold on the hyper-surface (Xo)2 {(X1)? + (X2)*} = 0. ‘
In addition, when ¢; = = Cm, We say that F’ satlsﬁes the “Null condition”, if for
any j, k, 1 (G, bl =1, )
(1.43) Z AP XoXpX,Xs =0 and E B XaXpX, =0
,ﬁ 17v6~q . ) ,ﬂ,‘Y——-O

hold on the hyper-surface (Xo)? — Z{(X1)? + (X2)?} = 0.
By assuming that F” satisfies the null condition (1.42), we obtain
C'

. I‘C"Nia‘i’az i\ )| < —  [Bult 2’:‘_’-1 arb.,; :
C )
TaFtrmng & “(t)]llﬂ';—‘l(“(t))lam |b|<§|a:l+1 0T (2, 8)|

for (|z|,t) € A; with t < T'. (See also the proof of Proposition 3.1 [15]) Using (1. 32), we
have

|x|§ 29(|z|, t)|T°N ‘(Ou, B%u)(z, 1) S C [au(t)][zjﬂzﬂl |I6u(t)|||a|+3
+C0u(®)] teppa, (u(E))1a 4211 0u(t) ljaj+3,
hence, by the aid of (1.28), we get
(144) |yl729(ly|, )TN (y, 5)| < CN6MN€I|auI|N+4t + CN[a'U'][_L] Moy 6.

for (|y|,s) € A; with s < t and la| < N +1, provided (1.6) with k& = [(N +4)/2]. As a
conclusion, it follows from (1:33), (1.36) and (1.44) that

Proposition 1.5  Let ' € C*(R? x [0,T)) be a solution of (0.1) and (0.2). Suppose
that (1.22), (1.23) and (1.42) hold. Let My be the constant in (1.26). Then there is a
sufficiently small number § = 6§(n) > 0 such that if (1.6) with k = [(N + 4)/2] holds then
we have for (z,t) € R2 x [0,T) and |a| < N

(1.45)  wi(lz|,t)|T0u (2, t)] < MN(§ + §||3U||N+4,t)€ + On[Oulfrp 10ulFr 6,
Note that we have from Propositions 1.1 with p = 3

_Cn[ou)?
(1.46) |ulln: < Cne(L+18) " gt

for 0 < ¢ < T and the solution v* € C*(R? x [0,T)) to (0.1) and (0.2), provided (1.6)
with k = [(N +1)/2] holds Combining this estimate with (1. 45) and (1.28), we obtain the
following. \
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Corollary 1.1 Let u* € C*(R?x [0,T)) be a solution of (0.1) and (0.2). Suppose that
(1.22), (1.23) and (1.42) hold. Then there is a sufficiently small positive number § such tha,t
if (1. 6) with k = [(N +7)/2] holds, then we have for0 <t < T |

(1.47)  [Bu®)]y < Cne(1+1) Cnlou ]l—a'—u
and : o
(1.48) () SCne(L+1) R,

We thus obtain a upper bound of [0u(t)]n. 'However, since the estimate is not uniform
in ¢, we need to work a little bit.

Energy Estimates II. In oder to derive a uniform a priori estimate of [Gu(t)]y with
respect to ¢, we need the following another enrgy estimate. For the proof, see the proof of
Proposition 5.2 in [15].

Proposition 1.6  Let v € C*°(R? x [0,T)) be a solution of (0.1) and (O 2). Suppose
that (1.22), (1.23) and (1.42) hold. Then we have for0 <t < T
(49) JoulEy < Ch{louo)lh+

t | ‘
+ [+ 8 H(Bu s + (o) Ou(6) s}
Now it follows from (1.49), Corollary 1.1 and (1.46) that

Corollary 1.2  Let u' € C*(R2 x [0, T)) be a solution of (0.1) and (0.2) and0 <e < 1.
Suppose that (1.22), (1.23) and (1.42) hold. Then there is a sufficiently small positive
number § such that if (1.6) with k = [(N + 14)/2] holds, then we have for0<t<T

t —§HONOW Y14
(1.50) ||6u(t)||§,+6$C,2v52{1+ /0 (14+5) cHM ]ri;—l,ads}.

Main result. Now we are in a position get a uniform a priori estimate of [u(t)]w-
We fix an integer N satisfying N > 13, which guarantees [(N + 14)/2] < N. We take g to
be

(1.51) 0v< €0 < 1, 3MN€‘0 < 6, 3CN€0 <1 and 12CNMN&‘0 < %,

where My is the constant in (1.26), Cy is the constant in (1.50) and § is the smallest number
taken in Proposition 1.5 and Corollary 1.2. ' We will fix an € in [0,£0) in the following. _

Suppose that the problem (0.1) and (0.2) has a solution uf € C*°(R2 x [0, T')) satisfying
[Ou]nr < 3Mye. Then we have -

[Bu]j w14y 7 < [Bulwr < 6 (< 1)

Therefore, by (1.50) and (1.51), we have for 0 <t < T

t o 1
Pu(®)llves < Chne (1+ /0 <1+s)—ads)°

<
< L
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Substituting this into (1.45), we have
 [Bulnr < 2Mye + 3Cy Mye [0u]jepa 1.

Hence, by (1.51), we have :
(1.52) [au]N,Ts < ZMNE.

We thus obtain a uniform a priori estimate of [Ou]nr. Now we state our main theorem.

Theorem 1.1 (] Hoshiga-K'|) Let n =2 and ¢; # c; if i # j. Suppose that (1.1), (1.2)
with p = 3, (1.3) and (1.42) hold. Then there exzists a positive constant e such that the
initial value problem (0.1) and (0.2) has a unigue C™-solution in R2x [0,00) for0 < & < &,.

Remark. Recently, K. Yokoyama extended this result for 3-dimensional case in [41].

2 Semilinear Case

In this section we study the semilinear case, namely, we assume F* = F¥(u). We consider
the following simple system of semilinear wave equations as a model case of the problem
(0.1) and (0.2):

(2.1) O%u— Au=|v|f in R" x (0,00),

(2.2) v —Av=|ul? inR"x (0,00),

(2.3) u(z,0) =efl(z), Owu(z,0)=eg'(z) in R",
(2.4) v(z,0) =ef%(z), Bw(z,0)=ceg*(z) in R™,

where 1 <p < ¢,n=2,3, f, ¢y € C*°(R?) and ¢ > 0 is a small parameter. It is regarded
as a natural extension of the following Cauchy problem:

(2.5) : O — Au = |uff in R™ x (0, 00),
(26) | ’U(III,O) = Ef(IL‘), atu(xa 0) = Eg(.’l)) in Rn:
where f, g € CP(R2).

Known results. The problem (2.5)—(2.6) has been extensively studied by many au-
thors (see, e.g., [1], [2], [5], [9], [10], [17], [31], [33], [35]-{40], [42], [43]). Set
n—1 n+l

2 PT g

(2.7 aw=pp' -1, p'=

Let po(n) be the positive root of the quadratic equation ap = 0, namely, o(3) =1+ v2 and
Po(2) = (3++/17)/2. Note that when p > 1, p > py(n) and 1 < p < py(n) are equivalent to
ap > 0 and ap < 0, resepectively. Then we have

Theorem 2.1  If ag > 0, then [ Small Data Global Existence | holds. While, if ap < 0,
then [ .Small Data Blow-up | holds. :

- For the proof, see F. John [17], [20] for n = 3 and R.T. Glassey [9], [10] for n = 2. Here
we give an observation why ag > 0 implies [Small Data Global Existence] based on the
following basic estimate. o : :
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' Proposition 2.1  Let u(z,t) be a solution to 8}u — Au = F with the zero initial data. |
Then we have for (z,t) € R™ X (0,00)
(28) DI+ 0 /2un i)

< C sup sup{lyl 2 (1+8+|yl)‘+"(1+|s lyl) | F(y, 8)[}
0<s<tycRn

for any p>0 and v > 0. Here r = |z| and we have set-
(2.9) ‘ Qy(rtiv) =1+ [t —1])7,

and A+i-r)> i osts
: ) : <t=T
(210) @2(1', 3 V) - { (1 +t— T)-%(]_ +t— 'r)[%"”]*‘ , ’Lf r<t.

In addition, [a], = max{a,0} and A%+ =1+log A.

We introduce the norm of u(z,t) as follows:
: n=1 *
(2.11) llulll=  sup  {lu(z,)(1+2+7)"7 [@a(r,t;p")}.
(5:)€R"x(0,0) '

Then, if ap > 0, we get
’ a=1 *

(212)  sup sup {ly|"T (1+s+ |y (1 +|s — Iy} **[uly, s)IP} < ClllulllP.
0<s<tyecR» -

Indeed, this estimate immidiately follows, if we choose p such that 0 < 4 < ap. Having the
estimate (2.8) with » = p* in mind, we need to assume ap > 0 so that a a priori estimate
holds. .

Next we consider the critical case ap = 0, namely, p = po(n).

Theorem 2.2 If ag = 0, then [ Small Data Blow-up | holds. Moreover, as for the life
span T(g) of classical solutions of (2.5)~(2.6), there exist positive constants A and B such
that :

(2.13) exp(Ae PPV) < T(e) < exp(Be #* V).

For the proof, see J. Schaeffer [35], Y. Zhou [42] and [43], and also H. Takamura [36].
The p-g system. We turn our attention to the Cauchy problem (2.1)—(2.4). Set

'=a+pB, a=pg -1, B=gqp* -1,
»_n—1 n+1l ._n—-1 n+1

Then we have

Theorem 2.3 IfT' > 0 and 0 < p* < ¢*, then [ Small Data Global Eristence | holds.
While, if T < 0, then then [ Small Data Blow-up | holds.

For the proof, see D. Del Santo, V. Georglev and E. Mitidieri [7] for the case I" # 0 and
K. Deng [8] for the case I' < 0.

In the following, we consider the critical case I'(p, ¢,n) = 0. Here, given p, g, f; and gj,
- we define the life span T*(¢) as the supremum of all 7' such that a C2-solution of (2.1)—(2.4)
exists for all z € R? and 0 <t < T. Then our main result of this section is as follows.
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Theorem 2.4 ([ K-Ohta]) Let1<p<gq,n= 2,3, I'(p,q,n) =0, g; € C*(R?) and
0<e<1. Assume that v . :

(214) fiz) =0, gi(®)>0 (z€R%j=1,2), g(0)>o0.

Then the classical solution of (2.1)~(2.4) blows up in a finite time, and there ezists a positive
constant C, independent of €, such that the life span T*(e) of the classical solution of (2.1)~
(2.4) satisfies " ' '

(2.15) T*e) <exp(Ce?™™) (0<e<1) i p<yq,

(2.16) T"(e) <exp(Ce?™ D) (0<e<1) if p=g.
Remark. For 3-dimensional case, Y. Kurokawa and H. Takamurs in [32] obtained the
same estimates as in (2.15) and (2.16) and the lower bounds of the life span, independently.

Key lemma. The key point of the proof of Theorem 2.4 is to reduce the blowup
problem for (2.1)~(2.4) to that for a system of integral equations (2.17)—(2.18) below.

(2.17) P2) 2 1493 [ (1-E0) eNg(Opag (22 0),
(218) B 2 [*(1- 0 Pp(O)dc (2 0),

where a, b, p, ¢, o, B, v and X be constants satisfying
(2.19) ' 1<p<gq, B=20, v>0, A>1
Then we have

Lemma 2.1 Let (¢(2), $(2)) be a solution of the system of integral inequalities (2.17)-
(2.18). Assume that either '

(2.20) - a+pb-1)>0, a+ps8>0,
or : )
(2.21) a+pb>0, a>0.

Then the life span of (p(2),¢(2)) is bounded from above by a positive constant depending
~onlyonp, q, B and 7. '

Lemma 2.1 is a key lemma to prove Theorem 2. 4. The terms e** and € with o < 0
and § > 0in (2.17)—(2.18), which never appear in the problem for the single equation (2.5)-
(2.6), make the problem difficult. And our method is also applicable to the problem for
the single equation and the assumptions (2.20) and (2.21) lead the different estimates of
the life span (2.15) and (2.16) in the theorem. For the further details of the proof of the
theorem, see [30]. ‘ '
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Proof of the key lemma. Here we give the proof of Lemma 2. 1. In what follows,
we always assume that (¢(z), #(2)) is a solution of (2.17)—(2.18) under the condition (2.19).

Lemma 2.2 Assume (2.19). Let A>0,0<h <1 and Z > 0. Suppose that
(222) p)2A  (2272). |
Then there exists a positz’ve constant Cy depending only on  and vy &uch that
(2.23) | P(2) > CLATWIN 1P - (2> Z + h),

(2.24)  #(z) 2 CLA'WEN (2> Z +h).

Proof: F1rst we show (2.23). Since A > 1 and 0 < h < 1, it follows from (2 18) and (2.22)
that for 2> Z +h

(2.25) ¢(2)

v

b [* — o~ M2=0)) BX g9
A /_h/A 1 e )e Ad¢
bBA(z—h/)) pq — e~ Mz=0)
> y\e A/_w(l =9 dg
— g Mz—0)
i (1 e ) d(.

Thus (2.23) follows from (2.25) and the following, fact:

> ye P AN /

z

A el
Next we show (2.24). Again from (2.18) and (2.22) we have for z > Z
2.2 - > 0 [7 (1 — 20 BN 4
(_6) #(z) = v /z( e )e A%d¢
> yAbA? /Z (169 ac.

Thus (2.24) follows from (2.26) and the fact that for z > Z + h we have

/ih/,\ (1 - e—*(z—C)) d¢ = _e'_h:_l_if_z > 17'.2_ (0<h<1).

z ' 2 h2 ‘
— o~ Mz—¢) — p—(z—0) — p—h _ il
(2.27)/2(1 e )d(z/z_h(l e v)d(-e 1+h2 = (0<h<1).
This completes the proof. ' , O

Lemma 2.3 LetB>0,0<h<1 andZ >0. Suppose that either

(2.28) (2.20) and ¢(z) > BX"1P* (2> 2), |
or ' |
(2.29) | (2.21) and é(z) > BN (2> 2Z).

Then there ezists a positive constant Cy depending only on vy such that
(2.30) I ¢(z) >CsBP(z—Z—-1) (222+1),

(2.31) o(2) > CsBPh? (2> Z+h).
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Proof: Under the assumption (2.28) or (2.29), we show

). | > B [ (1= e M0 > 7).
(2.32) o(2) > 7B /Z (1-e?e0)de (22 2)
First we assume (2.28). It follows from (2.17) and (2.28) that for z > Z

. (233) (P(Z) > ,.YAa Lz (1 _ e—A(Z-C)) ééACBPAP(b—l)ePﬂACdC
| = yBEATHO-D [ (] _ =20 gletmBre g
0 /z (1 e )e d¢ |

- By the assumption that a + p(b— 1) > 0 and a +pB > 0 in (2.20), we have (2.32).
Next we assume (2.29). It follows from (2.17) and (2.29) that for z > Z

(2.34) o(z) > Y /Zz (1 _ e—_A(z—C)) ew\CBPAPde

= Brx [7(1- 0 e,

'By the assumption that a 4+ pb > 0 and & > 0 in (2.21), we have (2.32).
‘Thus, (2.30) follows from (2.32) and the fact that for z 2 Z + 1 we have

— p—Mz—() =g —F -4y e M- ,_ 7
/ (1 e )dC z2—7 ; + Ae z—Z7Z —1.

While (2.31) follows from (2.32) and (2.27). o

From Lemmas 2. 2 and 2. 3, we have the following lemma.

Lemma 2.4  Assume (2.19) and either (2.20) or (2.21). Let A> 0,0 < h <1 and
Z 2 0. Suppose that |
(2.35) p(z)>2A (22 2).

Then there exists a positive constant Cg depending only on p, B and v such that

(2.36) 0(2) > CoAM(2—Z —2) (2> Z+2),
- (2.37) ©(z) > CeAPR?PY2 . (2> Z 4 2h).

Leinma 2.5 For any L > 0 there exists a constant Zy = Zy(L) > 0 such that
(2:38) - P(2) 2L (22 Z). |

Proof: From (2.17) we have ¢(z) > 1 for all 2 > 0. Thus it follows from Lemma 2. 4 (we
take A=1and Z =0 in Lemma 2. 4 ) that

(2.39) | 0(2) > Co(z~2)  (222).

Thus Lemma 2. 5 follows from (2.39). S - O
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Lemma 2.6  Let j be a non-negative integer. Suppose that there erist constants A; and
Zj such that _
(2.40) p(z) 2 A (2 2> Z;).

Then there ezists a constant M > 1 such that

(2.41) : 0(2) > Ajr1 - (22 Zjp),
where AP ‘ 5
_ - P |
(2.42) Ajp1 = MG + 1) Zinn=2Zj+ /=3 G2

Proof: From (2.40) and Lemma 2.4 (we take A = Ai,h=1/(Gj+1)?and Z = Z; in
Lemma 2. 4 ), we have

o CeAT! 2
(2.43) p(2) 2 W ( 2 Z; +( +1)2)

Thus we obtain (2.41) and (2.42). _ o

Lemma 2.7  Let {A;}%, be the sequence deﬁned by (2.42). If Ay > Ly := MVel%+im
then we have lim;_,oo Aj = 00. Here v =1/(pg—1) and m = Zk__z(pq)“" logk.

Proof: From (2.42) we have

. J
logA; = (pq)’long—(I;?_lllogM

—(4p+4) {log j + (pg) log(j — 1) + (pg)?log(j — 2) + -+ + (pg) 2log 2}

lo M
> (pg) (long - X2 (p+4) E(M) ~*log k)
k=2
= (pg)’ (log ﬂ; — (4p + 4)m) )
M
Since pq > 1, this completes the proof. ' 0.

We are now in a position to give the proof of Proposition 2. 1.

Proof of Lemma 2.1: Put Ag = Lo + 1. If we take Zy = Zyp(Ap) in Lemma 2.5, we
have p(2) > Ao for z > Zy. Moreover, it follows from (2.42) that Z; = Zy 4+ Y5, 2/ k2 for
j 2 1. Thus if we put Z* :=sup,» Z; = Zo + L4, 2/k?, we have Z* < 00. From Lemma
2.6 for any j > 1 we have ¢(z) > A,- for all z > Z*. Therefore, from Lemma 2. 7 we see
that the life span of (¢(z), #(2)) is less than or equal to Z*. Since the positive constant Z*
depends only on p, g, 8 and 4, this completes the proof. 0O
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