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Strichartz estimates for wave equations
in the homogeneous Besov space
M.Nakamura (H% 3%)
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1 Introduction

In this note the author describes his recent work on the linear esti-
mates for wave equations in the homogeneous Besov space. We consider
the inhomogeneous wave equations

O%u(t, z) — Ault,z) = f(t,z), t€R, z€R", n>2,

u(0, ) = 0,u(0,2) = 0, (1.1)

where n denotes the space dimension, f is a complex valued function on
R x R™, and A denotes the Laplacian in space variables. We shall prove
Strichartz estimates of the following type

llu; LT, Bl < CILF LU, Bigs (1.2)

where I denotes an interval in R, Bf, o denotes the homogeneous Besov
space defined later and the constant C is independent of f and I. For
any 1 < ¢ < oo and a Banach space X, we write the mixed norm of a
function g : I — X by

lg; LI, X = {fues lg(); X |9d8}1/9 for 1< g < oo,

llg; L (I, X)|| = supse; |l9(t); X |- (1.3)

On the estimate (1.2), Ginibre and Velo in [3] have shown some
generalization of almost all Strichartz-type estimates obtained up to that
point, in which one of conditions necessary for (1.2) is given by

where 6(r) = n(1/2 — 1/r) (see [3, Proposition 3.1]). On the other
hand, Harmse in [5], Oberlin in [10], Bak, McMichael and Oberlin in
[1] have already shown the ”off duality” estimates, namely (1.2) for
n+1)/2n-2/n+1) < 1/r < (n—1)/2n with ¢ = r, § = 7 and
p = p = 0in (1.4). The above two results meet only on the original
Strichartz estimate [11], otherwise they are independent.



The author introduce Strichartz estimates which involve the above
results and have new ones. Although the proofs are omitted, they are
obtained by the abstract setting such as the unitarity of the operator
exp(ityv/—A) (i = v/—1) , the duality argument, the Hardy-Littlewood-
Sobolev inequality and the complex interpolation method. The key
method is complex interpolation(see [2, Chapter 4] or Proposition 2.
1 below), by which we could loosen the conditions restricted by the
Hardy-Littlewood-Sobolev inequality, therefore our results could involve
[1, Theorem 6’], [5, Theorem 2.3] and [10, Theorem 3].

Our main result is Proposition 2.2. Recently Keel and Tao [7]
have obtained the estimate at the "endpoint” by the real interpolation
method. We used their methods to supplement our methods in the crit-
ical cases.

2 Notation and propositions

As usually done, we will rewrite (1.1) to the integral equation. For
that purpose, we introduce some operators defined on the tempered dis-
tributions §'(R") or S'(RxR™). We denote by w*, U(t) the operators on
S'(R™) defined by w* = (=A)M2 U(t) = exp(itv/=A), and by Go, G+
the integral operators defined by ‘

Gof(t) = /OtU(t—S)f(S)ds, Gef®) = [ U-95()s, (@9)

for any function f in §'(R™*!). We denote by G any of Gy, G+, and by
H the operator w™!G. To show the required inequality (1.2), it suffices
to show the boundedness of the operator H from LI(R, Bf,z(R")) to
LR, B2, (R™)).

Here we shall introduce the homogeneous Besov space B,é’, (R™) for
any p€ Rand 1 <r,s < 0o (see also [2], [3] and [12]). For 1 < ¢ <
and a normed space X, we denote by Eg(X ) the space of {a;};cz, a; € X,
with the norm given by

lag; (X)) = {Tjezllaj; X937 for 1< q< o,

i\ (2.6)
lag; £° (X = supjez [lag; X|-

We denote by F' the Fourier transform in R"®, and by * the convolution
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in space. Let {;};ez C C°(R") such that
suppFp; C {z| 2771 < |2| < 2711}, Z Fpj(z) =1 for |z|#0.
JEZ
. (2.7
We denote by B;” s(R™) the space given by
{u€ S'R™) llu; BE,(R™)| = 12776; % u; £5(L7(R™))]| < 00} (2.8)
We make abbreviation such as Bf = Bf, o(R™) and LIBF = LA(R, BP).

The main tools are embeddings(see [2, Theorem 6.5.1])

BYs L7 for 2<r<oo, "= BY for 1<r<2, (2.9)
Bf —s Bﬁll for p>p1 withp—n/r=p—n/r, (2.10)
and the following complex interpolation method (see [2, Th 5.1.2, Th

6.4.5] ). Let u be a positive measure on R, and for any Banach space
X, let LY(R, p; X) be the space of a function f : R — X with the norm

U If; X|[9du}/e for 1 < q < oo,

2.11
supecr I£(8); X||  for g = oo. (2.11)

Proposition 2.1 Letn >1. Letl < sg,81,70,71 < 00,1 < qo,q1 <00
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and po,p1 € R. Let K be an bounded operator from L% (R, y; Bfg) to

Bgo, and from L9 (R, p; B2Y) to BY . Then K is a bounded operator
from LYR, u; Bﬁ) to Bg, where s,r,q, p are given by

1/s=(1-0)/so+86/s1, 1/r=(1—-8)/ro+0/r,
1/¢q=(1-=0)/q0+0/q, p=(1-0)po+0ps,

forany0 <0 <L 1.

(2.12)

In order to describe our statement in concise form, following Kato
[6], it is convenient to use the following geometric notation. We denote
by O the closed unit square in R?, defined by 0 < z,y < 1. In this
note we denote by @ and Q the points (1/¢,1/r) and (1/§,1/F) in O
respectively, and we write z(Q) = 1/q, y(Q) = 1/r. For P,Q € 0,
[PQ] and (PQ) represent the closed and open segment connecting P
and Q@ respectively. And [PQ) denotes [PQ]\{Q}. We denote by ¢’ the
conjuga,ﬁe of g, namely ¢ = ¢/(g—1) for 1 < ¢ < 00 and ¢’ = oo for

q=1. Andfor Q € O, Q' denotes (1/¢',1/r"). We introduce some special



points and sets in O, by which it is convenient to state our propositions
(see Figure 1,2,3).

0=(0,0), A=(1,1), B=(0,1/2), C=(1/2,(n— 3)/2(n — 1)),
(C=(1/4,0)ifn=2), D=(1/2,0),
=(L,(n-3)/2(n-1)), F=(0,(n-3)/2(n-1)),

(E=D, F=0ifn=2), '

To=[OBCD] (Ty = [0BC)ifn=2, Ty = [OBCI\{C} ifn=3),

T ={B}U(BEF),

(2.13)

where [OBCD] denotes the closure of the square defined by O, B, C,
D, and (BEF') denotes the interior domain of the triangle defined by B,
E, F. For a set S in O, we denote by S’ the set of the point @’ with
QeES.

If we introduce the linear functionals

(@) =1/r+2/(n-1)q, m(Q)=1/r+1/(n~1)g, (2.14)
for @ in O, then B and C are on the line defined by m(Q) = 1/2, B and
E are on m1(Q) = 1/2, B’ and C' are on W(Q) =(n+3)/2(n-1), B

and E’ are on m(Q) = (n+ 1)/2(n — 1). The pair (Q, Q) will be called
a conjugate pair if Q and Q in O satisfy

(@) = m(Q) + 2/(n — 1). . (@215)

In particular, for Q € [BC] and Q € [B'C], (Q, Q) is a conjugate pair.
We now refer to the following two properties. Let (Q, Q') be a conjugate
pair. If 2(Q) = 0 and z(Q) = 1, then y(Q) = ¥(Q). If Q is on [BE] and
2(Q) =1, then y(Q') = y(Q).

We call the pair (Q, Q) admissible if the linear operator H is bounded
from L‘jB,’-,3 to LqB,E’ for any p and g in R such that

p+6(r) = 1/q =2+ p+ 8(7) — 1/3. ' (2.16)

Since w* (A € R) is an isomorphism from B? to BP~*, if the linear
operator GG is bounded from LqB,f to Lfo for any p and g in R such
that

p+06(r)—1/g=1+p+6(F)—1/4, (2.17)
then (Q, Q) is admissible.

We are now in a position to state our main proposition.
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Proposition 2.2 (see Figure 4) Letn > 2. Let (Q, Q) be a conju-
gate pair with £(Q) < z(Q). And let Q and Q satisfy one of the following
conditions.

1) QeT, (n-3)/(n-1)#<1/r ((n—8)/(n—1)7 < 1/r forn=23).
Moreover m(Q) < 1/2 and 0 < z(Q) if Q ¢ [B'C").

2)QeT,1/f <1-(n-3)/(n—1)r (1/7 <1=(n-3)/(n—1)r forn =
3). | : |
Moreover m(Q) > (n+1)/2(n -’1) and z(Q) < 1 i Q ¢ [BO).

Then the pair (Q, Q) is admissible.

Remark 1. Let (Q, Q) be an admissible pair with § # oo and 7 # oo.
Then (Q', Q) is also an admissible pair. Indeed, H', the dual operator
of H, is a bounded operator from Lq'BT_,p to LQIB;,ﬁ , and (2.16) could
be written as

—p+6(F) =1/ =2—p+6(')—1/q. (2.18)

Since H is written as a linear combination of Hj, H., therefore (¢, Q')
is also an admissible pair. In this sense, the proof for the case (2) in
Proposition 2. 2 follows from that of (1) immediately.

Remark 2. In Proposition 2. 2, applying the Sobolev embedding the-
orem, we could take Q and Q in O more widely. For example, let
(Q, Q) be an admissible pair, then for any 1,7 with 0 < 1/r < 1/r
and 1/7 < 1/7 < 1, ((1/¢,1/7m1),(1/G,1/71)) is also an admissible
pair (note that the embeddings Bf — Bﬁll and B,Ell <~ Bg imply
p+68(r) =p1 +6(r1) and p+ 6(F) = p1 + 6(71) in (2.16) respectively).

To show some typical examples the Sobolev embedding theorem ap-
plied to Proposition 2. 2, we introduce a set S in 0. For QeT,letv
be the supremum of z(Q) with (Q, Q) in Proposition 2. 2 with (1). Let
now S be a set given by '

S= {Qen|n(Q) =@ +2/(n—-1), z(Q) < z(Q),
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0<z(Q) <v(0<z(Q) <v forn=23)} if Qe (B'C'E),

-~

S= BU{QeD|m(Q) <1/2,m(Q) 2n(Q)+2/(n-1),

2(Q) <v (z(Q) < v forn=23),z(Q) < z(Q)} if QeT\(B'C'E).

(2.19)



For Q) € T, let S be the set defined by Q' as above, and let S’ be the set
of the point @] with Q; € S. o

Corollary 2.1 (see Figure 5) Let Qe T and Qe S. OrletQeT
and Q € S'. Then (Q, Q) is admissible.

Remark 3. The most familiar Strichartz-type eétimates are the mixed
space-time estimates in the Lebesgue space. If the conjugate pair (Q, Q)
satisfies (2.16) with p = 5 = 0, then it holds

1f—1r=1/G—1/g=2/(n+1). (2.20)

Therefore if Q and () satisfy (2.20) and (1) or (2) in Proposition 2.2,
then we have

IH f; LIL7|| < C||f; LILT|, (2.21)

for any f € LILT, where we have used the embedding (2.9). Especially
for the diagonal case, namely r = ¢ and ¥ = §, we obtain the estimate
given by [1, theorem 6’], [5, Theorem 2.3], [10, Theorem 3]. Indeed for
(n+1)/2n—-2/(n+1) < 1/r < (n—1)/2(n+1), the above Q and Q satisfy
(1) in Proposition 2. 2, and for (n—1)/2(n+1) < 1/r < (n—1)/2n, (2)
in Proposition 2. 2. In the above argument, @ is uniquely determined
by Q as (2.20). But we should note that if (Q,Q) in Corollary 2.1
satisfies (2.16) with p = p = 0, then (2.21) also holds.

In Propbsition 2.2, we must assume z(Q) < z(Q) and z(Q) > 0, or

z(Q) < 1. The following proposition could give some supplements for
the cases z(Q) = z(Q) = 1/2, z(Q) = 0 and z(Q) = 1.

Proposition 2.3 Let2<r<o00,1<§<2<q<00. Let7 =7/, and
let 7(Q) > 7(Q) +2/(n— 1). Then (Q, Q) is admissible.

The results in Proposition 2. 3 for the case 1 < § < 2 < ¢ < 0o are
also obtained by Corollary 2.1 and Remark 2.
Let now Q be fixed with z(Q) = 1, and let Q, be the point such that

Q) =T(Qc) +2/(n—1) and m(Q.) =1/2. (2.22)

And let T1, S; be the sets given by

Ti={Qe0|n(Q) £1/2,2(Q) < 1/2 (z(Q) < 1/2forn = 3)}, (2-23)

133



S1=T1U{QeU|m(Q) <1/2,z(Q) <=z(Q.),z(Q) < 1/2}. (2.24)

For Q with z(Q) = 0, let S be the set given by Q' as above, and let S}
be the set of the point @} with @ € 5. '

<2 Q = (lal/f) and
QeS8 Orlet2<r<oo,Q=(0,1/r) and Q € S|. Then (Q,Q) is

admissible.

Corollary 2.2 (see Figure 6) Let1 < 7 <

. Next we consider the case ¢ = § = 2 with n > 4. In this case,
applying Proposition 2.3 and Remark 2, we were able to show the
admissibility of (Q, Q) for any Q € (CD] and Q € (C'D']. However the
real interpolation method described in [7] could give some extension in
this case. Namely with the proof in [7, section 6] slightly modified, we
obtain the following lemma.

Lemma 2.1 Letn > 4. Let (Q,Q) be a conjugate pair. If z(Q) =
- z(Q) =1/2 and

(n—1)/2(n — 2) < y(Q) < (n? = 5)/2(n — 1)(n — 2), (2.25)

then (Q, Q) is admissible.

Since Lemma 2. 1 is obtained quite analogously to [7], we will use it
without proof. To proceed our argument, it is convenient to introduce
the linear functional

m(Q) =1/r +1/(n — 2)q. (2.26)
For Q with z(Q) = 1/2, let Ty, S be sets given by

T ={Q e 0| m(Q) <1/2,7(Q) < m(Q) +2/(n —1),z(Q) < 1/2},
- (2.27)
Sy =Ty for Qe [C'D), Sa=Tu\[0B] for Q ¢[C'D). (2.28)
For @ with z(Q) = 1/2, let S3 be the set given by @’ as above, and let
S5 be the set of the point Q] with Q1 € Ss.

Corollary 2.3 (see Figure 7) Letn > 4. Let Q € O satisfy z(Q) =
1/2 and (2.25), and let Q € S3. Or let Q € O satisfy z(Q) = 1/2 and

(n—3)2/2(n-1)(n-2) < y(Q) < (n—3)/2(n —2), and let Q € S}..

Then (Q, Q) is admissible.
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Figure 4. Proposition 2.2 with (1) (n>38).
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Figure 5. Corollary 2.1 (n>3).
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Figure 7. Corollary 2.3.
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