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ARCHIMEDEAN SHINTANI FUNCTIONS ON GL(2)
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1.Introduction

Shintani functions for GL(n) was defined by Murase and Sugano in the study
of automorphic L-functions [5]. They proved the uniqueness and the existence of
this function over a non-archimedean local field and obtained new kinds of integral
formula for the standard L-functions as an application. Our aim in this note is
the case study of archimedean Shintani functions on GL(2), which is not studied
in {5]. In §3, we define archimedean Shintani functions on GL(2) generalizing that
of Murase and Sugano. Also, our definition of this function can be considered as
a generalization of the O¢ model studied by Waldspurger [6]. Now we consider the
following problems. -

(1) Decide the dimension of the space of archimedean Shintani functions.
(2) Find an explicit formula of non-zero archimedean Shintani functions.

We will give an answer to these problems in §5.

2.Preliminaries

2.1. Groups and algebras. Throughout this note, F means either the field of real
numbers R or that of complex numbers C. Let G be the real reductive Lie group
GL(2,E) and 6 be an involution defined by 6(g) = *g~(g € G). We denote the set
of fixed points of # by K. Then K is a maximal compact subgroup of G and

"~y

{ O(2,R) for E=R,
U(2) for £ = C,

Moreover we define an involutive automorphism o of G by o(g) = JgJ (g € G),
where J = diag(—1,1). Then 8o = 06 and the set H of fixed points of ¢ is equal to

H = {g € Glo(g) = g} = {diag(h1,h2) € G | h; € EX} ~ B* x EX.
In particular, H is abelian subgroup of G.
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Let g = gl(2, E) be the Lie algebra of G. If we denote the differentials of ¢ and
o, again by # and o, then we have §(X) = —*X and o(X) = JXJ(X € g). Let us
write the eigenspaces of 6 and o by
t={Xegld(X)=X}, p={Xeglf(X)=-X},
h={Xeglo(X)=X}, qg={X¢€glo(X)=-X}

Therefore we have the decompositions g = €@ p = ) @ q. Remark that £ is the Lie
algebra of K and b is that of H. Let :

coshr sinhr
A= {a’" - (sinhr coshr) €G

Then a is a maximal abelian subspace of pNq.
For a Lie algebra b, we denote by b® the complexification b ®g C of b.

re R} . a=Lie(A).

2.2. Representations. In this subsection, we recall parametrizations of the irre-
ducible unitary representations of K, H and G.

Let us denote by K the set of the equivalence classes of irreducible finite dimen-
sional representations of K. Since K is compact, the highest weight theory (cf.
Knapp [4; Theorem 4.28]) gives a parametrization of K by the set

A_{{(O,e)IS:O,l}UN, for E =R,
Tl {A=000) [N EZ N >N},  for E=C.

Let (7, VA) € K be the corresponding representation to A € A. Then we have

1, if A=
. ’TA 0,¢) for F=R
dimV, = 2, ifAeN

Al — Ao+ 1, forE:C‘

Next let us parametrize the totality H of the equivalence classes of irreducible
unitary representations of H. To do this, we put

Ao — { {0,1}2,  for E=R,
BT 72, for £ = C.

For every s = (s1,82) € C? and k = (k1,k2) € Ng, we define a representation nk
of H by

nf (diag(hy, ha)) = RE hE? |ha [ F |hg|2 7%, diag(ha, he) € H.

Clearly H = {rff|s = (s1,52) € (V=1R)?, k= (k1,k2) € Ng}.

Let P = NpApMp be the Langlands decomposition of the upper triangular
subgroup P of G. For every z = (z1,22) € C? and | = (I1,l2) € Ng, we define o;
on Mp and v, on ap = Lie(Ap) by

oy (diag(er, €2)) = ey, diag(e1,e2) € Mp, & € EY

UV, (diag(tl,tz)) = 2111 + z3ta, diag(tl,tz) € ap, t; € R.



Then we can construct a representation 7t = Indg(1y, ® expv, ® 0;) of G which
we call the non-unitary principal series representation. A dense subspace of the
representation space is

{1 €C®(G) | f(nama) = =) 1835, (m) £ ()}

with norm

1£]2 = /K (k) 2,

and G acts by 7L(g) f(x) = f(zg). Here pg is the half sum of the roots of (ap, g)
positive for Np.

If z, € +/—1R, then the representation 7. is irreducible and unitary. This
representation is usually called the unitary principal series representation P! of
G. Now we put pgo = pp(diag(l,—-1)), ie. pro = 1 and pco = 2. If the
parameter (z,1) satisfies 21 + 23 € v—1IR, —pgo < 21 — 22 < 0 and l; = Iy, 7l is
irreducible and infinitesimally unitary. The unitary version of this representation
is called the complementary series representation C of G. The representations

7! belonging to these two series have the following K -types from the Frobemous'
rec1proc1ty theorem;

I = { 76 ® Yo pen Tans i+l =0 (mod2), o
EnEN T2n—1, iflj +l3 =1 (mod2),
e = { 2 50 T+, l2=3): ifly 2 1o, for B C.
D e Tla+d, Li—g)» if 1y < la,.

In the case of E = R, 7. contains the discrete series representation Dg X
subrepresentation if the parameters satisfy z; + 23 € vV/—1R, 21 — 25 = —j — 1 for

J € Z»o, and I + Iz = j (mod2). The K-types of Dg 2142, aT€ given by

Y

],Z1+22|K Z TJ+2n
neN

Let us denote by Goo the set of the equivalence classes of irreducible unitary rep-
resentations of G belonging to the above series. Then the unitary dual G of G
consists of Gso together with the unitary characters (cf. Wallach [7]).

In the folloing sections, we use the same letter for a given representation and its
underlying (g€, K)-module. Also we use the notations s’ = s — 85 and 2’ = z; — 2o,
for brevity.

3.Shintani functions

'8.1. Shintani function. Let n € H. Consider C®-induced module C°°Ind$(n)
with the representation space

CY(H\G) = {F € C*(G) | F(hg) = n(h)F(g), (h,9) € H x G}



on which G acts by the right translation. Then C3°(H \G) has structure of a smooth
G-module and of a (g€, K)-module.

On the other hand, let us take an irreducible Harish-Chandra module IT* € G,
and consider the intertwining space

I.,,,H = Hom(gc,K) (H*, CmInde(n))
and its image
Sy = U Image(T).
Telyn

Here * means the contragredient (g&, K)-module. We call ¢ € Sy a Shintani
function of type (n,II).

For any finite dimensional K-module (7, V;), we define C;° (H\G/K) by the
space of smooth functions F' : G — V. with the property

F(hgk) =n(h)T(k)"'F(9),  (h.gk) € HxGx K.

Now let us take a finite dimensional K-module (7, V;) and a K-equivariant map
i: 7% — II*|x. Here 7* is the contragredient representation of 7. Moreover let ¢*
be the pullback via ¢. Then the map

T, ~= Homg(r*, C°(H\G)) 2 CZ,(H\G/K)
gives the restriction of T' € Z,, iy to 7* which we denote by T; € C32.(H\G/K). Set

Sun(m) =T, Telym

and we call ¢ € S, (1) a Shintani function of type (n,IL; 7).

3.2. Radial part. Let us write the centralizer and the normalizer of a in KNH by
Zxnw(a) and Ngngr(a), respectively. If we put wo = diag(1, —1), then the quotient
group W = Nknu(a)/Zxnm(a) has the unique nontrivial element woZrna(a).

For each pair of n € H and a finite dimensional K-module (7, V;), let us denote
by C$3(A;n,T) the space of smooth functions ¢ : A — V; satisfying the following
conditions;

(1) (n(m)T(m))p(a) = ¢(a), m € Zxnu(a), a € A,
(2) (n(wo)T(wo))p(a) =p(a™), a€A,
(3) (()T(D)e(1) = »(1), le KNH.

Lemma 3.1. (Flensted-Jensen [1; Theorem 4.1])
(1) G = HAK = HATK, where AT = {a, € A|r > 0}.
(2) The set C° (H\G/K) is in bijective correspondence, via restriction A, with
the set C3o(A;n, 7).

Let (r,V,) and (7/,Vy/) be two finite dimensional K-modules. For each C-
linear map v : Cpo (H\G/K) — C°.(H \G/K), we have a unique C-linear map
R(u) : Cp(4; n, ) — C(4;7, ') with the property (uf)la = R(u)(f|a) for
f € CZ(H\G/K). We call R(u) the radial part of u.



4.Characterization

4.1. Shift opemtor The vector space p© becomes a K-module via the adjoint
representation. Let p© = pg @ pz be the irreducible decomposition of p€ as a K-
module, where pz = (pN Z ) Zg is the center of g, and pg ~ Vg with 5 = 2 for
E=Rorf=(1,-1) forE C

Take an orthonormal basis {X;} of pg with respect to the Killing form. For

a given n* € H and (7x;, Va) K, we define a first order gradient type differential
operator V;Z o 77sﬂ_)‘(H\G/K) — Co3., A ®Ady g (H\G/K) by

Ve f = ZRX,,fQ@Xz, feCx, (H\G/K),

where
Rxf(9) = £f(9-exp(tX))|,_,, forXeg® geGC.

This dlfferentlal operator VS .y, Is called the Schmid operator. Now let us assume
that A € N>3 for £ = R or )\ ()\1,)\2) € A with )\1 - >\2 > 2 for E = C. Then

we can define the minus shift operator

V (H\G/K) — C

ns,T)‘ 71 sTA

% oy (H\G/K)
as the compositions of V%,n
component V_g.

4.2. System of differential equations. Let II* € Goo, and let (, V) € K be
the minimal K-type of II. Moreover, let n¥ € H with s = (s1,s2) € (v/—1R)?
and k = (k1,k2) € Ng. We consider a characterization of the space S, ri(7) of
Shintani functions of type (n*,II;7) by some differential equations.

Let Z(g®) be the center of the universal enveloping algebra of g€. It is well known
that each element u € Z(g®) acts on IT*, hence on Spr.11(7a)| 4, as a scalar operator
Xu called an infinitesimal character (¢f. Knapp [4; Chap.VIII §6]). Therefore we
have the differential equation

(4.1) R(uw)p(ar) = Xu(P(ar)

for each ¢ € Sy (7a)|4 and u € Z(g°).
Now let us assume that II* = D% . if E = R or IT* = P! such that |I; —I3| > 2
if B = C. Since 7, is the minimal K-type of II, then 7\_g does not occur in the

K-type of II. Thus any element in S,k n(7x) is annihilated by the action of the
minus shift operator V_, C;’O TA(H\G/K) — Cf;o . ﬂ(H\G/K) and hence,
the differential equation

(42 R(Vy 7, )elar) = 0

with the projector from V) ® pg into an irreducible

holds for each ¢ € Spr i(7a)]4- »

The above differential equations for ¢ € C$(A; 7k, 7,) are necessary conditions
for belonging to the space Spk 1(72)|a. But we can prove the following theorem
which says that the above equations are also sufficient conditions.



Theorem 4.1. ([2; Proposition 6.1}, [3; Theorem 5.3], [8; Theorem 2.4])

Letn* € H, I* € @oo, and let (15, V) € K be the minimal K-type of II. Then
the following system of differential equations characterizes the space Syr ri(7a)|a C
CS(A;nk, ) of Shintani functions of type (nf,II; 7).

(1) IfII* = P! or CL, the equations (4.1) for allu € Z(g%).
(2) If E=R and IT* = Dg‘,z1+z2’ the equations (4.1) foru =1 and (4.2).

5.Results

In view of Theorem 4.1, the space Sy« 11(7)| 4 of Shintani functions is the solution
space of some system of differential equations in C%‘}(A;'r)f, 7»). By the systems
of equations in Theorem 4.1 and the constructions of Shintani functions via the
Poisson integrals [3; §6], we can prove the following theorem.
Theorem 5.1. ([2; Theorem 6.2, 6.3], [3; Theorem 7.1})

Let ok € H and II* € Goo. Then the space Sper of Shintani functions of type

(n%,11) is non zero if and only if n¥|z, = Il|z,. Here Zg is the cenler of G.
Moreover, for such pair of representations (n¥,1I) we have

. 2, fE=R, I*=P!, andly #1ls
dlmSn,n =

1, otherwise.

Moreover we can state an explicit formula of Shintani functions of type (nk, 11 7)
for some special cases.

Theorem 5.2. ([2; Theorem 6.2], [3; Theorem 7.2])

Let nf € H and II* = P! or CL € Goo with Iy = ly. Then the minimal K-type
(x, V) € K of Il is 1-dimensional. If the parameters s, z, k, and | satisfy the
equations
S1+8y=21+2z, kitke=lL+I1 (mod2) (E=R), ki+ko=11+1s (E“—:C),
then the space Sn;c,n(TA) has a base whose radial part is given by

o ! ! 1o
(1— 1) ZE,ozF1 Z+Ss +,0E,0+(5,z S+pE,o+5;,OE,o+5;$ v())\’
4 4 2
with § = 2|ky — 1], v} € V, and the variable x = tanh®2r. Here oFy(a,b;c;x) is
the Gauss’s hypergeometric function.
Theorem 5.3. ([2; Theorem 6.3])
Letn* € H and IT* = Dt € Goo. Then (1y, Vi) € K with A = j + 2 is the

Jyz1+22

minimal K-type of I1. If the parameters satisfy the equations
si+sa=z+2, k+k=l+Il=j (mod2),
the space Sy 11(7») has a base whose radial part is given by

INEY

X

ul o (W)vjz2 + (1)U ;o (y)v—j—2.
Here {v_;_2,vj+2} is the standard basis of Vjia, and

Ul (j42)(T) = (=y)~ 7 (1—y)>

with the variable y = (ZZ;\/—:—%P
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