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COMPLEX VECTOR BUNDLES AND JACOBI FORMS

V. GRITSENKO!

INTRODUCTION

In these notes we present a new link between the theory of automorphic forms and
geometry. For an arbitrary compact manifold one can define its elliptic genus. It is a
modular form in one variable with respect to a congruence subgroup of level 2 (see, for
example, [L], [HBJ]). For a compact complex manifold one can define its elliptic genus as
a function in two complex variables (see [K], [H6]). In the last case the elliptic genus is the
holomorphic Euler characteristic of a formal power series with vector bundle coefficients.
If the first Chern class ¢;(M) of the complex manifold is equal to zero in H2?(M,R),
then the elliptic genus is a weak Jacobi modular form with integral Fourier coefficients of
weight 0 and index d/2, where d =dim¢(M). The same modular form appears in physic
as the partition function of N = 2 super-symmetric sigma model whose target space is
Calabi-Yau manifold M (see [W], [EOTY], [KYY], [D]). We note that all “good” partition
functions appeared in physic are automorphic forms with respect to some groups. This
fact reflects that physical models have some additional symmetries. If ¢; (M) # 0, then the
elliptic genus of M is not automorphic form. In these notes we define a modified Witten
genus or automorphic correction of elliptic genus of an arbitrary holomorphic vector bundle
over a compact complex manifold and we study its properties.

We mainly present here automorphic aspects of the theory. In the proof of the theorem
that the modified Witten genus is a Jacobi form we use a nice formula which relates the
Jacobi theta-series, its logarithmic derivative, the quasi-modular Eisenstein series Ga()
and all derivatives of Weierstrass p-function (see Lemma 1.3 bellow). To get applications
to the theory of complex manifolds we study Z-structure of the graded ring of weak Jacobi
forms with integral coefficients. We prove that the graded ring of Jacobi forms of weight
0 has four generators

J()Z,* = Bm>1 JoZ;m = Z{¢o,1,%0,2, P03, Do 4]

which satisfy the only relation 4¢ 4 = ¢o,1¢03 — qS?,’z. The functions ¢¢ 1,...,¢0,4 are the
fundamental Jacobi forms related to Calabi-Yau manifolds of dimension d = 2, 3, 4, 8.
The same Jacobi forms are generating functions for the multiplicities of all positive roots
of the four generalized Lorentzian Kac-Moody Lie algebras of Borcherds type constructed
in [GN1-GN4] (see also §3 of this paper).

The ¢°-term of the Fourier expansion (¢ = €2™7) of the elliptic genus is essentially
equal to the Hirzebruch x,-genus of the manifold. Thus we can analyze the arithmetic
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properties of the x,-genus of the complex manifold with ¢;(M) = 0 and its special values
such as signature (y = 1) and Euler number (y = —1) in terms of Jacobi modular forms.
For example, we prove that the Euler number of a Calabi-Yau manifold M, of dimension
d satisfies

e(Mg) =0 mod 8 if d=2 mod8
(see Proposition 2.6). The special values of the generators of the Jacobi ring at z = %, 3
1 are related to the Hauptmodules of the fields of modular functions. Using this fact we
prove that

Xy=¢(Mg) =0 mod 9 if d=2 mod?6

(see Proposition 2.7). Some other constructions (for example, flgz)—genus, the second
quantized elliptic genus) and other applications to the theory of vector bundles one can
find in my course given at RIMS, Kyoto University, on our joint seminar with K. Saito in
1998/99. I would like to take this opportunity to express my gratitude to all members of
K. Saito’s seminar. I am also grateful to the Research Institute for Mathematical Science
of Kyoto University for hospitality.

§1. AUTOMORPHIC CORRECTION OF ELLIPTIC GENUS

Let M be an almost complex compact manifold M of (complex) dimension d and let E
be a complex vector bundle over M. Let us fix two formal variables ¢ = exp(27i7) and
y = exp(2miz), where 7 € H; (the upper half-plane) and z € C. One defines a formal
power series E, , € K(M)[[q, y*]]

By =QN_,..B'® @ A, EeQSrTie (}2 So Tt (1.1)

n=0 n=1

where Ty denotes the holomorphic tangent bundle of M and

/\xE =Y (A\*E)e*,  S,E=) (S*E)a*

k>0 k>0

are formal power series with exterior powers and symmetric powers of a bundle E as
coefficients. We propose the following

Definition 1.1. Modified Witten genus (MWG) of a complex vector bundle E of rank r
over a compact (almost) complex manifold M of dimension d is defined as follows

X(M, Eyr,z) = g7~ O/2yr/ /M

exp (%(cl(m - cl(TM)))'

_al(E)

271

o (1(B) = 1(Ta) - Ga(r) ) exp (=S 5 (7,2) ) h(By) )

where ¢;(E) and p; (E) are the first Chern and Pontryagin class of E, td is the Todd class,
ch(E, ,) is the Chern character which we apply to each coefficient of the formal power
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series and the integral f denotes the evaluation of the top degree differential form on the -
fundamental cycle of the manifold.

In the definition we use Jacobi theta-series of level two ¥(r, z) = —1011(T, 2):
' n=1 n2 gn - n— n, - n
d(rz)= Y (=0T g%yt =g/ (1 - " )1 - "1 - g,
n=1mod?2 n>1
09 1 oo : . : . .
By(r,2) = &-(T, z) and G2(T) = —5; 4+ Y o | 1(n) ¢" is a quasi-modular Eisenstein series

- of weight 2 where oy(n) is the sum of all positive divisors of n.

1.2. Witten genus. As a limit case of the definition above one obtains the Witten genus
(see [W], [L], [HBJ]). Let assume that M admits a spin structure (i.e., the second Witney-
Stiefel class wy(M) is zero or ¢;(Ty) = 0 mod 2) and py (M) = 0. Let E=MxC" be
the trivial vector bundle of rank r over M. Then ch (A, E) = (1 + z)" and

o1y ek (@ A, E*®® A e p) = (L)

= n(r)

Thus
2 1~ 1
g2y (M, r. i/
XM M i 2) / H L sinh(z,/2) H L (1— qnew)(1— gre™=)
- J r
= A( M,®Sqn(TM & Tny* ))iii)—
= ()"

If we take the trivial vector bundle of rank 0, then

Witten genus (M)

n(7)**
This is an automorphic function in = with respect to SLy(Z).

= Witten genus (M) _(—("Ty_i)ﬂ

X(M,0;7,2) = x(M;T) =

1.3. Elliptic genus of Calabi—Yau manifolds. This case is of some interest in physics.
Let B = Ty and ¢;(Ty) = 0. Then there are no correction terms of type exp(...)
in Definition 1.1. Thus the MEG of Ty is, up to the factor y4/2, the Euler-Poicaré
characteristic of the element E, ,. This functmn is called elliptic genus of the Calabi—Yau
manifold M or genus one partition function of the super- symmetric (2, 2) -sigma model
whose target space is M:

x(M, Tyr;7,z) = Elliptic genus (M; 1, z) = y%/? / ch(Eg ) td(Th).
M

According to the Riemann-Roch-Hirzebruch theorem one can see that the ¢°-term of
x(M; 7, z) is essentially the Hirzebruch Xy-genus of the manifold M:

, d
X(M;7,2) = Y (=1 xp(M) y5 2+ (1.2)

p=0

d+1 |
Q( Z (ml)py—-p (Xp(Mv_TIT/I) - Xp—-1 (‘AJ? TX/I) + X}i(Ma TM) - Xp+1(M7 TM))) +

p=-—1
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where x(M, E) = Z:=o(“1)q dim HY (M, E) and x?(M,E) = x(M, A\*T3; @ E) or, for a
Kahler manifold, x,(M) = ) (—1)?h?¢(M). We remark that in this case the Fourier
coefficient of the elliptic genus is equal to the index of the Dirac operator twisted with a
corresponding vector bundle coefficient of the formal power series Eg 4.

It is known that the elliptic genus of a Calabi—Yau manifold is a modular form in
variables 7 and 2z (see [Ho], [KYY]), i.e., it is a weak Jacobi form of weight 0 and index
d/2. If c;(Tn) # 0, then the elliptic genus of M defined above is not a modular form in v
and z. We add the three correction factors in Definition 1.1 in order to obtain a function
with a good behavior with respect to the modular transformations in 7 and z. If E = Ty
and c1(Ty) # 0, then the integral in Definition 1.1 contains the only correction term

oo~

Thus the elliptic genus of M (as a function in two variables) is equal to the zeroth term
in a sum of d + 1 summands of the modified genus. These summands correspond to all
powers of the first Chern class of M

d
x(M, Ty; 7, z) = Elliptic genus (M;7,2) + Z(/ e (M)™(...)).
n=1 M

In general the elliptic genus is not an automorphic form in two variables but the modified
elliptic genus is. The main result of this section is

Theorem 1.2. Let E be a complez (holomorphic) vector bundle of rank r over a compact
complez manifold M of dimension d. Let x(M, E;1,z) be the modified Witten genus. Then

the product
¥(, 2) d=r
X(M,E;T,z ( )
( ) n(7) |
is a weak Jacobi form of weight 0 and indezx d/2. In particular, x(M, E;T,z) 15 a weak
Jacobi form if rank(E) > dim(M).

First we recall the definition of Jacobi forms of the type we need in this paper. Let
t > 0 and k be integral or half-integral. Let v be a character of finite order (or a multiplier
system for half-integral k) of SLy(Z). A holomorphic function ¢(7,z) on H; x C is called
a weak Jacobi form of weight k and indez t with character v if it satisfies the functional
equations '

ar+b z it —CEo .
¢<CT —{_I:d’ ps d) = v(v)(er + d)* 2™ er+d (7, 2) (v = (c 3) € SLy(Z)) (1.3a)

and
B(7,2 + AT + ) = (~L)HOTW 2TENTERIG(7 2) (€ Z) (1.3b)

and ¢(7, z) has the Fourier expansion of the type

$(r,2)= Y. fln,D) gy

n>0 lEt+Z
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We denote the space of all week Jacobi forms of weight k, index ¢ and character (or
multiplier system) v by Ji:(v). The space Ji¢(v) is finite d1men51onal (see [EZ]). The
only difference with [EZ] is that we admit Jacobi forms of half-integral weight and half-
integral index. One of the main examples of weak Jacobi forms of half-integral weight with
trivial SLg-character is the quotient of the Jacobi theta-series by the cube of the Dedekind
n-function

b_1,1/2(7,2) = 9(7,2)/n(T)® = (r}/% - r‘l/z)_+ g(...)eJd_j1

Sketch of the proof of Theorem 1.2. To prove the theorem we represent x(M,E;T,2) in
terms of the theta-series. Let ¢(E) be the total Chern class of the vector bundle E

r T

o(B) = ci(B) =[](1+=:)

1=0 1=1
where z; = 27i€; (1 <1 < r) are the formal Chern roots of E We denote by z’; = 2mi(;
(1 £ j £ d) the Chern roots of Tys. We recall that

ch ( /\tE) = H(l-{-te“), ch (S.E) =[] - _1tex'_.

=1

According to the last formulae we have

ch (Eq ) td (Tar) = H HH e ~~”"")(1—q"yle““)mg__

n=1 j=1i=1 (1___qn le™ )(1—q“exi)

Therefore

=003y 12 exp( 5 (er(B) = ca(Tan) ) e (B )i (Thr) =

_1)T-dI"J1: 7'9 ;(i_ £z) H 19 7-)C ) 27”(]) (1 4)

j=1
Puting the last expression under the integral we obtain the following formula for the
modified elliptic genus

X(M,E;1,z) = / z];!em:p( —4m? Gy (T)EF — z( Z)ég) (7, ?T‘*)" fz)

d

[[ e (4n*Ga(r)c?) 5 ’7( 5(2ic;). (1.5)

j=1

We shall calculate the top differential form under the integral using Lemma 1.3 bellow. To
formulate this lemma we need to recall the definition of the Weierstrass p-function

(7' ) =272+ Z (z +w)™2 - _2)EJ§?§T
wEZ;(—)}-Z

which is a meromorphic Jacobi form of weight 2 and index 0 Wlth pole of order 2 along
z € Zt + Z.



76

Lemma 1.3. The following formula s valid

exp (_4,”2(;2(7)52 __ %E(T’ z)ﬁ) __(I.%'{._Q = exp (-— Z o= (7, z)%)

where ™ (1, 2) = —aq—;p(T,z).
: z

Proof. The Jacobi form ¢_, .1 has the following exponential representation as a Weierstrass
o-function (see, for example, review [Sk])

T, 2 =19(T’Z)= T1Z) ex 2> 7)(2miz)%* |
623(n) = A28 < iz ep (3 o Gu(emia®) ()

E>1

where Gx(7) = —Bag/4k + Y oo 02k—1(n)q™ is the Eisenstein series of weight 2k. (For
each 7 € H; the product is normally convergent in z € C.) Since one can obtain the
Weierstrass p-function as the second derivative of the Jacobi theta-series % log¥(r, 2) =
—p(7, 2) + 872 G5 (7), the identity (1.7) implies that

("‘2)(7- 2) — (—1)"(’!7, — 1)' Z(Zk——n)

. +2 ) (2riz)*Gar(r)
i k>2,2k>n (2k — n)!

14

After that the formula of the lemma follows by direct calculation.

Now we can finish the proof of Theorem 1.2. According to the formula of Lemma 1.3
the Chern roots z; (1 < ¢ < r) of the vector bundle E and the Chern roots :c; (1<5<d)
of the manifold M can be splitted under the integral in (1.5), i.e.,

r

(M, Eyr,2) = — /M P(E;r,z) - W(M;7). (18)

nr+2d
The first factor depends only on the vector bundle E

(n— 2) T, 2
P(E;7,z) = exp (— Z p(ZTrz)"n‘ Zm? )

n>2 i=1

The second factor is the Witten factor

W (M;T) =exp< Z Gz’“ Zx;"”“ >

k>2 J=1

which determines the Witten genus of the manifold M as a function in one variable 7
(see §1.3). The derivation of order (n — 2) of the Weierstrass p-function is a meromorphic
Jacobi form of weight n and index 0 with pole of order n along z = 0. Thus the coefficient
of a monomial in z;, } of the total degree d in (1.8) is a meromorphic Jacobi form of
weight 0 and index r/2 with pole of order not bigger than (d — r). Therefore the product
d(r,2)*""x(M, E, 1, z) is holomorphic on H; x C. This is weak Jacobi form since its Fourier
expansion does not contain negative powers of g. Theorem 1.2 is proved.
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§2. Z-STRUCTURE OF THE GRADED RING OF JACOBI
FORMS AND THE SPECIAL VALUES OF THE ELLIPTIC GENUS

The structure over C of the graded ring of all weak Jacobi forms was determined in
[EZ]. The elliptic genus of a Calabi~Yau manifold is a weak Jacobi form of weight 0 with
integral Fourier coefficients. Thus one can put a question about Z-structure of the graded

ring
Z Z
‘] 0,% = @ J o,m
mEZZO
of all Jacobi forms with integral Fourier coefficients. We introduce its ideal

I ={p € TGuld(rz)= 3 a(n,D)g"y'}

n>1, I€Z

consisting of the Jacobi forms without ¢°-term. Using standard considerations with divisors
of one can prove

Lemma 2.1. Let m be integral, then we have

Z Z
J2k m+i = 9?50 2 Jzk m—1> J2k+1 m+3 ¢—1 3 J2k+2 m

where ¢q 5(7,2) = 9(7,22)/9(7,2) and ¢_,; 1 =9(r, z)/n(t)%. The ideal JOZ*( ) is princi-
pal. It is genemted by a weak Jacobi form of weight 0 and indez 6

I(r, 2)'?
n(r)t?

There exists only one (up to a constant) weak Jacobi form of weight 0 and index 1

bo,6(7,2) = A(T)g_y 1 (r,2)1% = = q(y? —y~3) 2+ 2(...).

3 p(r,2)d(r, 2)°

72 n(r)®

$o1(r,2) = — = (y+10+y™1) + g(10y*? — 88y™! —132) +

(see [EZ]). In the theory of generalized Lorentizian Kac-Moody algebras (see [GN1-GN4])
we defined the following important Jacobi forms of small indices:

n
m ,n€Z
=(y+4+y” )+q(y=t3-8yﬂ=2— i1+16)+q2(...) (2.1)
o3(:2) = ¢ g(1,2) = (¥ + 2+ y71) +¢(-2™° - 29** + 2y‘“ t4)+a 2
doalrd) = 5B < (1) g R B () (2

One can also represent these functions as symmetric polynomials in the quotients of the
Jacobi theta-series 9,43(7, 2)/F4p(7,0) of level 2. Let us put

1900(7‘,2) — '(910(7",2’)
'1900(7', 0)’ 191()(7',0)’

'1901(7‘, Z)

500 = 1901(7_ 0)

€10 o1 =
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Then we have

$o,1(7,2) = 4(&80 + &30 + €51)5 ¢o,g (7,2) = 4o0&10€01
0,2(7, 2) = 2((€oo10)* + (500501)2 + (£10é01)?)-

(To check these formulae one should compare only ¢°-terms of corresponding Jacobi forms.)
In the next theorem we construct a basis of the module J&m / Joz,m(q) and we find
generators of the graded ring Jp ..

Theorem 2.2. 1. Let m be a positive integer. The module
el
Tl T (@) = T [ - V]
is a free Z-module of rank m. Moreover we can chose a basis with the following ¢°-terms

(05 (T, 2)]go = y™ + ny + (202 —2) +ny ™' +y " (2 <n<m),

1
[ ((),r)n]q') = (12,m)

(my + (12 — 2t) + my ™)

where (12,m) is the greatest common divisor of 12 and m.
2. The graded ring of all weak Jacobi forms of weight O with integral coefficients is
finitely generated

JoZ;* = GB ’]OZ,m =Z[do,1,%0,2: P03, Po,4)
m
where ¢o1, Po,2, Po,3 are algebraicly independent and

40,4 = ¢0,100,3 — (15(2),2'

The second claim of the theorem is a corollary of the first part which on can prove by

induction on m and n. We give here only the formulae for the most important exceptional

Jacobi forms having the ¢°-term of type y +c¢ +y™1:

¢0,6(T, z) = ¢o,2¢0,4 - ¢(2),3 = (y + y_l) + Q(- .- )7
¢0,s(7" Z) = ¢0,2¢>0,6 - ¢c2>,3 = (23/ -1+ 2y*1) + Q(- .- )7
$0,12(7,2) = ¢o,4%0,8 — 2¢g,5 =(y—14+y ") +q(...).
We note also that

€06 = —ba1%0,4 + 9%0,160,200,3 — 85 2 — 2745 5. (2-3)

To prove that ¢o 1, ¢o,2 and ¢o 3 are algebraicly independent one has to consider values at
z = % We have

1 1 1

¢0,2(7'7 5) =2, ¢0’3(T, 5) =0, d)0,4(7’ —-) = _1.



79

(The two last identities follow from definition and the ﬁrst one is a corollary of the torsion
relatlon of the theorem.) The restriction of

1
$o.1(T, -2-) =a(r) =8+2%+2"¢? +11-21%° +3-2M¢ +359-2°° +...  (2.4)

is a modular function with respect to I'y(2) with a character of order 2.
We have also a result about the structure of the bigraded ring of all integral weak Jacobi

forms
Z Z
J*1* = @ Jk’m.
kEZ, mEZzo

Theorem 2.3.

J2F = Z[Eu(r), Es(7), A(7), Eg 1, Ea2, Bag, Ee 1, Fe 2, E§ 3, ¢0,1, 80,2, 90,3, $0,4, b-2,1]
where ¢_p 1 = 9?2 /n®, E41,...Es 3 are the Eisenstein—-Jacobs series with the zeroth Fouﬁe‘r
coefficient equals to 1 and Eg 3 = Eg 3 + 22 A15¢% 2.1

Using the result above we can analyze the value of the elliptic genus at the following
spec1al points z = 0 (Euler number), z =  (signature), z = T3 (A-genus) and z =

3, 1, L. For this end we have to study the restr1ct1on of the generators of the graded ring

of the integral week Jacobi forms. A special value of a Jacobi form is a modular form in
7. In the next lemma we give a little more precise statement than in [EZ, Theorem 1.3].

Lemma 2.4. Let ¢ € Jo; (t € Z/2) and X = (\, u) € Q. Then
Blx(7,0) = ¢(7, AT + p) exp(2mit (A1 + )
is an automorphic form of weight 0 with a character with respect to the subgroup
I'x ={M € SL,(Z)| XM - X € Z*}.

It is easy to see that if ¢ € J,?m with integral m, then the form ¢(7, ;) still has integral

Fourier coefficients if N = 1,...,6. In particular, the value of &(, z) at these points is
related to the “Hauptmodule” for the corresponding group I'o(V):
1 A(27) 1 A(4r)\'/?
,=) = 212 , . Y — 96 !
(7 2) A(T) €o(m 4) 2 ( A(T) ) ’
1 A(37)\ 2 A(TYA(6 1/2
bo(r, =) = 3° (J——l) () = (2DA6D )T
3 A(r) A(27)A(37)

Let us analyze the corresponding values of the four generators ¢o,n of the graded ring ng’ .
From the definition (see (2.1)~(2.2)) and the identity 4¢o 4 = @0 1603 — qﬁg’z we obtain

¢0,1(Ta 0) = 12, ¢o,2(7, 0) =6, ¢0,3(7'7 0) =4, ¢0,4(Ta 0) =3 (2-5)
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and
b h)=ar) baan D =) doalr = LD
boalrig) =2 doalrm) =60 goalr,d) = 4() .
bosn3) =0 doalng) =1 goa(r D) =2(r) :
boalrz)=-1  doalr3)=0 boalr, ) = 1.

The automorphic functions «(7), 3(7) and 4(7) are automorphic forms of weight 0 with

respect to the group Ty, I‘él)(S) and I‘(()l)(ﬁl) respectively. These functions have integral
Fourier coefficients. The identity (2.3) gives us the following relations between the auto-
morphic functions «, 8 and

12 AR2T) alr)? — 6 [ A(37) 1 — 3(r)3 —
Ay =etr -t $(305) =sp o
A(4r)\'/? ~(T)\? 2 \%.
z <T<r>) -4("2) - (569)
It follows that
o(r)—8=0 mod 2°, B(r)—3=0 mod 3° (2.7)

(compare with (2.4)). Using the definition of ¢o 3 and v(7) and the relations between the
Jacobi theta-series ¥,p of level 2 we have

_ 1900(27') _ '1900(27', 0)

V() = 901(27)  Dor(27,0)"

One can check that ¢o1(7,2z) = ¢ 5(7,2) — 860,4(7,2). Thus

Vo (27)
’931 (27')

a(t) = 16y(1)* — 8 =16 - 8.

In particular all Fourier coefficients of v(7) and a(T) are positive.

Example 2.5. A-genus. Let X = (%,+%). Then I'x (see Lemma 2.4) contains the
principle congruence subgroup ['1(N). In some cases I'x will be strictly larger. For
example, if X, = (3, 3), then

T

¢‘X2(Ta O) = ¢(T7

) exp(G(r + 1)

is an automorphic form with respect of the so-called theta-group

I‘9={M=(‘; Z)ESLZ(Z)IME(é ?) or ((1) (1)) modZ}.
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The corresponding character is given by e3(M) = exp(2rim(d + b —a — ¢)/4) = £1. This *
character is trivial if index m of Jacobi form is even. Let us consider I'g-automorphic

function
T+1

ém(T) = q_—%¢0,m(7a_ D) )

We have

) ) ) - 900\ 12

D=0, di=-1, d2=-2 L=di+6i=(>
where |

7 910 — U8 -1 ig Z

$1(7) = d—go—g— = —q7 ¥ +20q% + --- € My(To(2), &2).

961910

Now we analyze some special values of the elliptic genus. As it easy follows from (1.2)
we get Euler number of a Calabi-Yau manifold My for z = 0 (d is arbitrary) and and its
signature for z = 1 (d is even):

X(Md, Ty 0) = e(Md)a

X (Mg, T, %) =om(r) = (—1)2s(My) +q(...) € ME(To(2), v2), vz((‘; 3)) = emim§,

The formulae (2.5) gives us some divisibility of Euler number of Calai~Yau manifolds. We
note that the quotient e(M)/24 appears in physics as obstruction to cancelling the tadpole
(see [SVW] where it was proved that e(M,) =0 mod 6).

Proposition 2.6. Let M, be an almost complex manifold of complez dimension d such
that c;(M) = 0 in H*(M,R). Then

d-e(My) =0 mod 24.
If ci(M) =0 in H?(M,Z), then we have a more strong congruence

e(M)=0 mod8 if d=2 mod 8.

Proof. The first fact follows simply from (2.5). If d = 2 mod 8 one can write the elliptic
genus as a polynom over Z in the generators ¢

e(Ma) = P($0.1, 0,2, 90,3, $0,4) | z=0 = ¢1,m(b0,1]2=0)(b0,4]z=0) T mod 8.

If one put z = ——I'—;'—l, i.e., y = —q'/?, then one obtains that the series
Ey gz = ® /\qn/2TM ® ® /\qn/zTK/I ® ® Sqn (T & Ty)
n>1 n>1 n>1

is *-symmetric. According to the Serre duality all Fourier coefficients of x(My, 7) are even.
The constant ¢; ,, from the last congruence is equal to the coeflicient of (Mg, ) at the
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minimal negative power of q. Therefore ¢; m is even and we obtain divisibility of e(Msm+2)
by 8.

We note that divisibility of de(M) by 3 was proved by F. Hirzebruch in 1960. For
a hyper-Kahler compact manifold the claim of the proposition above was proved by S.
Salamon in [S]. After my talk on the elliptic genus at a seminar of MPI in Bonn in April
1997 Professor F. Hirzebruch informed me that the result of Proposition 2.6 was known
for him (non-published). Using some natural examples he also proved that this property
of divisibility of the Euler number modulo 24 is strict (see [H2]). . '

Formulae (2.6) provide us with a formula for the signature x(Mg; 7, %) as a polynom In

o(7). As a corollary of (2.6) and Theorem 2.2 we have that for an arbitrary Jacobi form
of integral index

1 1
¢0,4ﬂ1(7—7 '2—) =c+ 213‘1(- . ) ¢0,4m+1(7-1 5) = 8¢ + 28q( N )
1 1
Po,4m-+2(7, 5) = 2¢ + 2%q(...)  doams(T, 5) = 16c+ 2%q(...).

Similar to the proof of Proposition 2.4 we obtain a better congruence for the signature of
a manifold with dim= 2 mod 8 and ¢;(M) = 0:

X(Mgmy2;7,2) = 16c+ 2%g(...). | 7 (2.9)

It is interesting that the values of the Hirzebruch y-genus at y = e2™/3 and y = ¢ also

have some properties of divisibility. For z = % (resp. z = ;) we can write ¢o,m (T, %) (zesp.

$0,m(7, %)) as a polynom in B(r) = 3+ 27(g +...) (resp. in ~(7)*!). This gives us the
following results

1 1
$0,3m (T, 5) =c+3%(...), #0,3m+1(T, —3;) =9c+3%(...)
1
b0, 3m+2(T, §) =3c+3%(...).

Thus we have

Proposition 2.7. If ¢;(M) =0 (over R), then

1 ' 1
X(Mem;T, g) = mod 36, X(M6m+2;7', g) = 9¢y mod 34,
1

X (Mem+4; T, §) = 3¢; mod 3°.

where ¢1,¢y,¢3 € Z. For z = % we have:

1 1
X(Msma2;7, ) = 4+ 2%q(.),  oam+a(T, g) =det 2°q(...)

1 .
$0,4m+3(T, Z) =2c+28¢(...).
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§3. SQEG AND HYPERBOLIC ROOT SYSTEMS

We can consider n-fold symmetric product of the manifold M, i.e., the orbifold space
MM = M™/S,, where S, is the symmetric group of n elements. This is a singular manifold
but one can define the string orbifold elliptic genus of M[" (see for details the talk of R.
Dijkgraaf at ICM-1998 in Berlin [D]). Using some arguments from the conformal field
theory on orbifolds it was proved in [DVV] and [DMVV] that the string elliptic genus of
the second quantization Upn>1 M [*] of a Calabi-Yau manifold M coincides with the second
quantized elliptic genus of the given manifold:

Yo p"xemM gy = ] - (3.1)

— >0, im0 (1 _ qmylpn)f(mn,l)

where (M, T, z) = ZmZO, 1€Z (orZ)2) f(m,1)g™y' is the elliptic genus of M.

For a K3 surface, the product in the left hand side of (3.1) is essentially the power —2
of the infinite product expansion of the product of all even theta-constants (see [GN1]).
Following [DVV, §4] we call the product in (3.1) the second-quantized elliptic genus (SQEG)
of the manifold M.

Theorem 3.1. Let M = My be a compact complex manifold of dimension d with trivial
€1 (M):

X(M;7,2) = > f(m, D™y’

m>0, I€Z (orZ/2)

be its elliptic genus and SQEG(M; Z) (Z € Hy) be its second quantized elliptic genus.
We define a factor ’

77(7-)—%(‘3“"3X:io) Hz0=1 (?9(7-1 pz) e7rip2w)_X:io—p zf d — 2d0
n(r) =3 [I%, (9(r, ZBLz) edmiCr-1%0) Xaompts  if g9 41

where e = e(M) is Euler number of M and x|, = (—1)Px,(M) (see (1.2)). Then the
product

H(M; Z) = {

E(M; Z) = ¥(M; Z)-SQEG(M; Z)  (d = 2do)
E®(M; Z) = (E|Ay)(M; Z) (d = 2dy + 1)

determines a Siegel automorphic form of weight —%X:lo (M) if d is even and of of weight
0 if d is odd with a character or a multiplier system of order 24/(24, e) with respect to a
double eztension of the paramodular group T} (resp. IF), if d is even (resp. d is odd).

The case of CY 4. The basic Jacobi modular forms for this dimension are the Jacobi
forms ¢g 2 and ;b((f% (see Theorem 2.2, part 1). They correspond to the following cusp
forms for the paramodular group I'; (see [GN1] and [GN4]):

Az(Z) = Exp-Lift(¢o,2(7, 2)) = Lift(n(7)*9(r, 2))

=X 3 w(F) X (T e min e, con)
N>1 n,m>0,l€Z a|(n,l,m) a
n, m=1 mod4

2nm—12=N?2
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and

An(Z) = Lift(n()229(r, 22)) = Exp-Lift(4{3 (7, 2)) € Mu1(T2).
For an arbitrary Calabi-Yau 4-fold M, we have the following formula for its SQEG

E(My; 2) = Ay (Z) 0D Ay (Z)2 (M), (3.2)

We note that Ay(Z)* is the first ['s-cusp form with trivial character and Aq11(Z) is the

first cusp form of odd weight with respect to I's.
The Fourier expansion of the cusp forms Az(Z), A31(Z) and %1—;(%)- coincide with the
Weyl-Kac-Borcherds denominator formula of generalized Kac-Moody super-algebras with

a system of simple real roots of hyperbolic type determined by Cartan matrix Ay,r7, Ao 11
and Aj o respectively:

2 2 —6 —2 2 5 2-2-4 0
-2 2 -2-6 -2 2 0-4
— = — 0 =
Az, 11 (—6 —2 2-2>’ Azp (_z g 2), Az (~4 0 2~2>
—2 -6 -2 2 0-4-2 2

(see [GN1]-[GN4]). Thus, the formula (3.2) gives us three particular cases of Calabi-Yau
4-folds of Kac—Moody type when the second quantized elliptic genus is a power of the
denominator function of the corresponding Lorentzian Kac-Moody algebra:

E(My; Z) = A (Z)7X° ifx1=0
E(My; Z) = (%}f%) 0 if Xo(M) = —x1(M)
E(My; Z) = Do (Z2)% if xo(M) = 0.

For more details and for the cases of d > 4 see [G1].
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