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Abstract

In this note we show that the marked length spectrum with respect to the
Thurston metric on the complex projective structure determines the complex struc-
ture.

1 Introduction
A surface can be $\mathrm{e}\mathrm{n}\mathrm{d}\dot{\mathrm{o}}\mathrm{w}\mathrm{e}\mathrm{d}$ with either a real or a complex projective structure modeled
on $\mathbb{R}P^{2}$ or $\mathbb{C}P^{1}$ respectively [2], [3]. So a (complex) projective structure is a coordinate
system into open sets in $\mathbb{C}P^{1}$ so that the transition maps are projective maps i.e., the
restriction of elements in $PSL(2, \mathbb{C})$ . The projective structure on the surface of genus $g$

is a holomorphic bundle over the Teichmuller space with fibre quadratic differentials on
each hyperbolic structure (equivalently a complex structure).

W. Thurston described a projective structure as a bent structure of a hyperbolic
structure along some measured lamination. Embed a hyperbolic plane in hyperbolic 3-
space and bend the plane along the lifts of a closed geodesic in the surface. What we
see in the ideal boundary $(\mathbb{C}P^{1})$ is inserting a flat annulus along the geodesic. In this
point of view, Thurston described the geometry of the projective structures and gave a
concrete construction of the projective structure from a hyperbolic structure. See [5] for
related topics. He also defined a Thurston (pseudo)-metric (projective metric) parallel to
the Kobayashi metric (hyperbolic metric) on a Riemann surface.

We will use this Thurston metric to measure the length of geodesics and the area of the
projective structure. Since this metric measures only the length of the tangent vectors, it
is a Finsler metric if non-degenerate. Even though there are examples that a Finsler and
a hyperbolic metric can have th‘$\mathrm{e}$ same marked length spectrum and are not isometric, in
our situation, by the dint of the simple description of the Thurston metric, a projective
structure having the same marked length spectrum with a hyperbolic structure must be
isometric to that hyperbolic structure. We will deduce the problem to showing rather a
simple fact in hyperbolic geometry. After the description of the Thurston metric, it will
be clear that a projective structure with the same volume (in an appropriate sense) to a
hyperbolic structure is itself hyperbolic.
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2 Thurston metric and a graffiing

2.1 Thurston metric
Definition 1 Let $M$ be a $\mathbb{C}P^{1}$ manifold. For each tangent vector $v\in T_{x}M_{f}$ define the
length of the vector $v$ by

$t(v)= \inf_{f:\trianglearrow M}\rho(f^{*}v)$ ,

where the infimum is taken over all projective immersion $f$ : $\trianglearrow M$ and $\rho$ is the
hyperbolic metric on the unit disc $\triangle$ .

Note that since the Kobayashi metric is defined as the infimum over ffi holomorphic
immersion, generally Thurstion metric is larger than the Kobayashi metric. But the
Thurston metric has the following properties:

1. If two metrics are non-degenerate and coincide at a nonzero tangent vector, then
they coincide on the entire tangent space $TM$ .

2. If $t(v)\neq 0$ at $v\in T_{z}M$ , then there is a projective map $f$ : $\trianglearrow M$ realizing $t(v)$ ,
and this map is unique up to precomposition of automorphism of $\triangle$ .

Note that the hyperbolic metric (Kobayashi metric) does not distinguish some projective
structures but projective metric does.

2.2 Grafting
Let $X=H^{2}/\Gamma$ be a hyperbolic surface and $\gamma$ be a simple closed geodesic. Take a lower
half plane model of $H^{2}$ and arrange that a lift of $\gamma$ is the lower half of $y$-axis. Let $\gamma$

represent the element $\gamma(z)=e^{l(\gamma)}z$ where $l(\gamma)$ is the length of $\gamma$ . Next take the sector
$=\{re^{i\rho}|0<r<\infty, 0\leq\rho\leq\theta\}$ with the projective structure inherited from $\mathbb{C}P^{1}$ . Then
$A_{\theta}=\Theta/\langle\gamma\rangle$ is a flat annulus with height $\theta$ and circumference $l(\gamma)$ .

Cut $X$ along $\gamma$ and paste back $A_{\theta}$ . Then the hyperbolic structure on $X$ and the
projective structure on $A_{\theta}$ match along the copies of $\gamma$ to give a new projective structure.
This process is called the grafting along $\gamma$ according to Thurston. Since the simple closed
curves with weights are dense in the space of measured lamination, above construction
extends to an arbitrary measured lamination.

In terms of Thurston metric $t$ , it is not difficult to see that $t$ agrees with a hyperbolic
metric on the original piece and with a flat metric on $A_{\theta}$ . Thurston showed the following
theorem, which is the starting point of our argument in this note.

Theorem 1 This grafling map is a homeomorphism from $T_{g}\mathrm{x}\mathcal{M}\mathcal{L}$ onto $P_{g}$ where $T_{g}$

is a Teichmuller space, $\mathcal{M}L$ the space of measured lamination, $P_{g}$ the set of proiective
structures.

3 Hyperbolic structure is minimal volume

In general, if $N$ is just a norm and $g$ is an inner product on $\mathbb{R}^{n}$ , then the volume element

$dvol_{N}= \frac{Vol_{g}(B_{g}^{1})}{Vol_{g}(B_{N}^{1})}dvol_{g}$
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where $B_{g}^{1},$ $B_{N}^{1}$ denote the unit ball with respect to $g$ and $N$ respectively, is independent of
the choice of the inner product $g$ . So if $N$ is a finsler metric, it has a volume element in this
way. But in our case, it is clear from the description of the Thurston metric that we can
take the metric as natural one on each pieces, namely the hyperbolic metric on hyperbolic
piece and the flat metric on the grafted flat pieces. The area is then obviously the sum
of hyperbolic pieces and the flat pieces. Since the sum of hyperbolic pieces is always
$-2\pi\chi(S)$ , the area is strictly larger than the one of hyperbolic structure whenever it is
grafted. This shows that every nontrivial (meaning non-hyperbolic) projective structure
has strictly larger volume than the hyperbolic structure.

Note that the topological entropy of a flow on a compact metric space measures the
exponential complexity of the dynamics of the flow. So the geodesic flow on the flat metric
has topological entropy zero.

Let $M$ be a projective structure obtained from the hyperbolic structure $(S,g)$ grafted
along the measured lamination $L$ . Denote $t_{M}$ the Thurston metric.

Proposition 1 We have the following Besson-Courtois-Gallot [$\mathit{1}J$ inequality.

$Vol(M)h(t_{M})^{2}\geq Vol(S)h(g)^{2}$

where $h(g)$ denote the topological entropy with respect to the metric $g$ . The equality holds
iff $M$ is a hyperbolic structure $g$ .

Proof: Since $h(t_{M})=h(g)=1$ , by the above comments, the claim follows. $\blacksquare$

4 Hyperbolic structure has the marked length rigid-
ity

Let $M$ be a projective structure parametrized by $(g, L)$ by the Thurston theorem, where
$g$ is a hyperbolic structure and $L$ is a measured lamination. In this section we show that
if $M$ has the same marked lengh spectrum with some hyperbolic structure, then $M$ is
actually $g$ . First we prove a simple lemma.

Lemma 1 For any closed curve $c_{f}l_{t}(c)\geq l_{g}(c)$ . Equality holds only if $c$ does not intersect
$L$ .

Proof: As in Figure 1, if $c$ intersects the annulus, replace it by the curve above the
annulus followed by the segment $a$ along the boundary of the annulus and the curve
below the annulus. Then since the length of $a$ is less than the diagonal $d$ in Euclidean
geometry, the new curve constructed has strictly small length than $c$ in $M$ . If $c$ meets
the annulus orthogonally, the new curve is just the one with the segment in the annulus
taken out, and in this case also, it has the smaller length than $c$ in $M$ . Pull this new
curve tight in the hyperbolic structure $g$ to get a geodesic representative. This shows that
$l_{t}(c)\geq l_{g}(c)$ and the equality holds only if there is no annulus intersecting $c$ . $\blacksquare$

Suppose $M$ has the same marked length spectrum with a hyperbolic structure $h$ . Then
this lemma implies that for any closed curve $c,$ $l_{g}(c)\leq l_{h}(c)$ and the strict inequality
whenever $c$ intersects $L$ transversely. We will show that this is impossible.
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Figure 1: Replacing a curve by a shorter one

Theorem 2 Let $M=(g, L)$ be a projective structure having the same marked length
spectrum with a hyperbolic structure $h$ . Then $M=g=h$ .

Proof: We can assume that $L$ consists of simple closed curves since these kinds of
measured laminations are dense in $\lambda 4\mathcal{L}$ . Let $L=(c_{1}, \cdots, c_{k})$ . Then one can extend this
to ( $c_{1},$ $\cdots$ , $c_{k},$ $d_{k+1},$ , . .

$,$

$d_{3g(M)-\mathrm{s})}$ , where $g(M)$ is the genus of $M$ , to cut $g$ along these
curves into pairs of pants. Since $M$ and $h$ have the same marked length spectrum, all
the pairs of pants in $h$ have the same lengths of cuffs with the corresponding ones in $g$ .

Consider two pairs of pants glued along, say $c_{1}$ . This has four cuffs and $c_{1}$ as a waist.
Denote it $S_{h}$ and $S_{\mathit{9}}$ respectively. Since all the cuffs and the waist $c_{1}$ have the same length,
$S_{h}$ and $S_{g}$ differ only by the twisting parameter along $c_{1}$ . By Lemma 1, any closed curve
in $S_{h}$ crossing $c_{1}$ transversely has the strictly larger lengh than in $S_{g}$ . We claim this is
not possible, which is shown in the next section. $\blacksquare$

5 Geometry of a hyperbolic structure on the surface

Let $S$ be a pair of pants. The hyperbolic structure of $S$ is completely determined by the
lenghs of three cuffs since $S$ can be decomposed into two copies of right-angled hexagons
and a right-angled hexagon is determined by the lengths of three non-consecutive edges.
Let $S’$ be another pair of pants with the same cuff $c$ with $S$ . Glue $S$ and $S’$ along a cuff $c$ .

Denote it $M$ . Then the hyperbolic structure of $M$ is determined by the gluing parameter
along the cuff. There is a natural base point of the hyperbolic structures on $M$ . Let $l$ be
the arc meeting $c$ orthogonally and separating the other two cuffs. This arc is unique. Let
$l’$ be such an arc in $S’$ . If one glue $S$ and $S’$ so that one of the end point of $l$ and the one
the end point of $l’$ match together, this hyperbolic structure is a base point in the set of
hyperbolic structures. Any other hyperbolic structure can be described as the one glued
along $c$ rotated by the length $t$ from this base structure. See Figure 2. What happens in
the universal cover is the shifting along the lifts of $c$ , which is called the earthquake by
Thurston [4]. In Figure 3, the left hand picture shows the base hyperbolic structure and
the right hand one the hyperbolic structure rotated by $t$ . The geodesic $a$ in the rotated
structure is obtained as follows. The line consists of horizontal pieces, and vertical pieces
on the lifts of $c$ with length $t$ , is a quasi-geodesic. It converges to two points on the ideal
boundary of $H_{\mathrm{R}}^{2}$ , and $a$ is the unique geodesic connecting these two points. As the picture
suggests, the angles from $a$ to $c$ counter-clockwise, is strictly decreasing. For a complete
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Figure 2: Hyperbolic structure on $M$

Figure 3: Earthquake along the lifts of $c$

proof see [4]. Furthermore the rate of change of the length of $a$ at the base hyperbolic
structure is $\cos p+\cos q$ in Figur.e 3. In this section we use the Kerckhoff theorem [4] to
prove Theorem 2.

Theorem 3 (Kerckhoff) Let $\gamma$ be a closed curve and $\mu$ be a measured lamination. Let
$E(t)$ be the earthquake map defined by $t\mu(t\geq 0)$ . Let $g$ be a fixed hyperbolic structure
and $g_{t}=E(t)(g)$ . Let $l_{t}$ be the geodesic length of $\gamma$ in $g_{t}$ and $\theta_{i}(t)$ be the angle measured
from $\gamma$ to $\mu$ counter-clockwise. Then

$\frac{dl_{t}}{dt}(t)=\sum_{i}\cos\theta_{i}(t)$

and $\theta_{i}(t)$ is strictly decreasing.

What we want to show in this section is: For two hyperbolic structures $g$ and $h$ on $M$ , it
is not possible that, for any closed curve $\gamma$ intersecting the waist $c,$ $l_{g}(\gamma)<l_{h}(\gamma)$ .
Proof of Theorem 2: Since the Teichmuller space of $M$ is $\mathbb{R}^{+}$ , and for any closed curve
$\gamma$ intersecting the waist $c,$ $l_{g}(\gamma)<l_{h}(\gamma),$ $h=E(t)(g)$ for some $t>0$ . But it is not hard
to see that there is a closed curve $\gamma$ such that $\sum_{i}\cos\theta_{i}(t)<0$ with $\theta_{i}(t)$ almost $\pi$ in the
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hyperbolic structure $h$ (for example, a closed curve wraps around $c$ many times and cross
$c$ from the bottom to the top). Since the angle $\theta_{i}(t)$ is strictly decreasing, $\sum_{i}\cos\theta_{i}(0)<0$

in $g$ . This means that the lengh of the curve $\gamma$ was larger in $g$ than in $h$ , which is a
contraction.

This proof shows t.hat along the earthquake path, some curves get longer and some
curves get shorter.

6 Marked length spectrum on Projective structures
This section attempts to prove the marked length rigidity between two non-trivial pro-
jective structures. This seems to be much harder than the previous section problem. A
similar argument to lemma 1 shows that if one fixes a hyperbolic structure $g$ and a mea-
sured lamination $L$ , then $(g, L)$ and $(g, \rho L)$ do not have the same marked length spectrum
for $\rho\neq 1>0$ . Also $(g, L_{1})$ and $(g, L_{2})$ have the different marked lengh spectrum if there
is a closed curve which intersects only one of $L_{i}$ . Specially $(g, L_{1})$ and $(g, L_{2})$ have dif-
ferent marked length spectrum if $i(L_{1}, L_{2})\neq 0$ . The following theorem will show that
$(g, L_{1})$ and $(g, L_{2})$ have different marked lengh spectrum in any case.

In this section we prove the following simple theorem.
Theorem 4 Let $(g, L_{1}),$ $(h, L_{2})$ be two projective structures having the same marked length
spectrum and $i(L_{1}, L_{2})=0$ . Then $g=h,$ $L_{1}=L_{2},$ $i.e.$ , the projective structures are the
same.

Proof$\cdot$. Assume $L_{i}$ are weighted simple closed curves. Then we can extend $L_{\mathrm{t}}\cup L_{2}$ to the
set of $3g-3$ simple closed curves to cut the surface into pairs of pants. If a subsurface $M$ ,
which is a glued pants along a waist $c$ , has an annulus along $c$ in one projective structure
and no annulus in the other structure, by the proof of the previous section, there should
be no annulus and two hyperbolic structures on $M$ are the same. The only non-trivial case
is that both structures have annulus inserted. Denote the annuli $A_{g}$ and $A_{h}$ respectively.
Note that the lenghs of all the cuffs and the waist $c$ are the same by the assumption.
We still denote the hyperbolic structures on $M$ by $g$ and $h$ respectively. Then one is
obtained from the other by an earthquake. Let $h$ be $E(t)(g)$ for some $t>0$ without loss
of generality. Then it is easy to see using the universal covering picture that the projective
structure $(M, L_{2})$ is obtained from $g$ by first inserting $A_{h}$ and then earthquaking by the
distance $t$ . See Figure 4.

CASE I. $A_{h}$ is thicker than $A_{g}$ .
Choose a closed curve $\gamma$ in $(M, L_{1})$ such that $\sum_{i}\cos\theta_{i}>0$ with $\theta_{i}<\frac{\pi}{2}$ (again such a

curve exists by wrapping around $c$ many times and cross $c$ from the top to the bottom). As
noticed already, the lengh of $\gamma$ in the projective structure obtained from $g$ by inserting
$A_{h}$ , is longer than in $(M, L_{1})$ since $A_{h}$ is thicker than $A_{g}$ . Then by the Kerckhoff’s
formula, earthquaking by the distance $t$ makes $\gamma$ longer, which means that the lengh of
$\gamma$ in $(M, L_{2})$ is larger than in $(M, L_{1})$ . This is a contradiction. So $A_{h}$ cannot be thicker
than $\mathrm{A}_{g}$ . By the same argument we conclude that $A_{h}=A_{g}$ .

CASE II. $A_{h}=A_{g}$ .
In this case $\mathrm{a}\mathrm{k}\mathrm{o}$ , if $E(t)(g)=h$, then the closed curve in $(M, L_{1})$ with $\sum_{i}\cos\theta_{i}>0$

with $\theta_{i}<\frac{\pi}{2}$ is longer in $(M, L_{2})$ than in $(M, L_{1})$ since $(M, L_{2})$ is obtained from
$(M, L_{1}).$

by the earthquake along $A_{g}$ by the distance $t>0$ . This shows that $g=h$ .
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Inserting amuli is like
right earthquake

left earthquake

Figure 4: Earthquake of a projective structure
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