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On the Ford domains of once-punctured torus
groups

Hirotaka Akiyoshi*
wE BE Chk #3E)

1 Introduction

In [1], T. Jorgensen studies the Ford domains of the quasi-Fuchsian groups
obtained from a hyperbolic once-punctured torus. Eventhough [1] is not
finished nor easy to read, the characterization and the idea of proof given
there seem to be efficient to understand the quasi-Fuchsian punctured torus
groups. In the joint work with M. Sakuma, M. Wada and Y. Yamashita, we
can fill most of the statements given in [1]. Moreover, we can see that some
techniques used there are applicable to the groups in the boundary of the
quasi-Fuchsian space. '

Let T be a hyperbolic once-punctured torus and po : m1(T) — PSL(2,R) C
PSL(2 C) the holonomy representation. We define the representation space

= {p : m(T) — PSL(2,C)|p(g) is parabolic if py(g) is parabolic}/ ~,
Where ~ is the equivalence relation defined by the conjugation in PSL(2, C) .

 The quasi-Fucsian space is the subspace QF C R consisting of the quasi-

conformal deformations of po. We will denote by QF the closure of QF in
R. ‘

In [2], Y. N. Minsky studies the once-punctured torus groups, where a
once-punctured torus group is the image of an injective representation in R.
By the result of [2], all once-punctured torus groups are contained in QF
and are classified by the ending lammatlon vM(p) € H2 x H? — A, where A
is.the diagonal set of OH? x OH?.

In Section 3, we give Condition (J) which gives a characterization of the
ford domain of Imp (p € QF). Then we have the following theorem.
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Theorem 1.1. (1) There is a continuous map v = (v4,v-) : QF —
H? x H? such that the Ford domain of Imp satisfies Condition (J)
with respect to v(p) (p € QF).

(2) The map v in (1) can be estended to v = (v4,v-): QF — H2 xHZ2 - A
such that the Ford domain of Imp satisfies Condition (J) with respect
to v(p) (p € QF). Moreover, v (p) € OH? if and only if v¥ (p) € OH?
and the equation ve(p) = vM(p) holds.

Remark 1.2. (1) Recently, the map v: QF — HE x 2 — A is shown to
be surjective. (Jorgensen conjectures in [1] that v is also injective.)

(2) By Theorem 1.1 and the Minsky’s result in (2], we can characterize the
Ford domains of the once-punctured torus groups.

(3) There is a fine computer program OPTi by M. Wada [3] It would help
to understand the phenomenon.

2 Elliptic generators

‘It is desirable to describe the representations of m1(T") before moving on
to the study on the Ford domains of their images. As is well known, the
once-punctured torus T has a two-fold symmetry and the quotient space by
the symmetry is the obifold © with base manifold S? and (o0, 2,2, 2)-type
singularity. Then the fundamental group m;(T") is naturally identified with
an index two normal subgroup of 7¢™(0) as follows;

77(0) = (Po,Qo, Ro | F§ = Q5 = R = 1),
K = RyQoF,
m1(T) = (Ao, Bo),
Ay = KPF,, By = KRy, AOBOAEIB()"l = K?2.

(See Figure 1.) The following proposition holds. (It is not mentioned obvi-
ously in [1], however, one of the important ideas of the paper is the following
proposition.) '

Proposition 2.1. Let p be a representation in QF. Then there is a unique

representation p : w°(0) — PSL(2,C) such that the restriction of p to
m(T) is equal to p.

To simplify the notation, we will denote p in Proposition 2.1 by p and regard
QF a set of representations of 7w{™(0) rather than m(T).



Figure 1

By the above observation, it seems reasonable to study the structure of
the group 7™ (). We define the elliptic generators, which plays the key role
of our study, as follows.

Definition 2.2. (1) An elliptic generator triple (P,Q, R) is a triple of el-
~ements in 7¢"°(0) which satisfies

m7(0) = (P,Q,R), PP=Q*=R*=1, RQP = K.
(2) An element P € 7¢™°(0O) is an elliptic generator if there are Q,R €
7§7°(O) such that (P,Q, R) is an elliptic generator triple.
The elliptic generators satisfy the following proposition.

Proposition 2.3. Let (P,Q, R) be an elliptic generator triple. Then the
following holds.

(1) Each (RX™", P,Q) and (Q, R, PX) is an elliptic generator triple, where
XY denotes Y XYL,

(2) The triple (P, R,QF) is an elliptic generator triple.

(3) Any elliptic generator triple is obtained from (Po,Qo, Ro) by succes-
sively applying the operations in (1) and (2).
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The operation in Proposition 2.3(2) corresponds to applying a Dehn-twist
on O. Geometrically, we introduce the notion of slopes of elliptic generators.

Definition 2.4. The isotopy classes of the essential loops in T is in one-to-
one correspondence with Q U {oo}. We call the isotopy class of an essential
loop v a slope of . The slope s(P) of an elliptic generator P is the slope of
an essential loop which represents K P € 7, (T"). (We identify the slopes with
QU {oo} so that (s(Fo), s(Qo), s(Ro)) = (00,0,1).)

We define the Farey triangulation D of H?, which is helpful to study
the elliptic generators, as follows. The set of slopes Q U {oo} is naturally
identified with a subset of OH?. Put

D= {Xog|oo = (0,0,1), X € SL(2,Z)}.
(See Figure 2). Then the following proposition holds.

vProposition 2.5. (1) For two elliptic generators P and P', s(P) = s(P')
if and only if P' = PK" for somen € Z.

(2) For any elliptic generator (P,Q, R), the slopes s(P),s(Q),s(R) spans
a triangle in D. Conversely, any triangle in D is spaned by the slopes
of an elliptic generator triple.



3 Characterization of the Ford domains
We prepare several notations.

a b

Definition 3.1. o The isometric circle I(A) of an isometry A = d

PSL(2,C) is the circle in C with center —d/c and radius 1/|c|.

€

o The isometric hemisphere Ih(A) of an isometry A € PSL(2,C) is the
totally geodesic plane in H? (identified with the upper half space) with
OIh(A) = I(A).

e For p: 7¢"(0) — PSL(2,C), we denote by c(p, X) (resp. r(p, X)) the
center (resp. the radius) of I(p(X)) for any X € 7¢(O).

We shall use the Jorgensen’s cross section to canonize the Ford domains.
For any element of QF, we can find a unique representative p : 7{"°(0) —

PSL(2,C) such that p(K) = [(1) ﬂ and c(p,Qo) = 0. From now on, we
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regard QF the set of such representations. Now we define the Ford domains.

Definition 3.2. We define the (extended) Ford domain Ph(p) of p € QF
by

Ph(p) = N{Bzt(Ih(p(X))) | X € {"(0O), X(00) # oo}.

Note that the (extended) Ford domain Ph(p) is not a fundamental domain
for the action of Imp on H?® unless it is quotiented by the group {(p(K)).
However, to simplify the notation, we define as above. (It is rather obvious
to quotient by p(K), since it is normalized to be the parallel translation by
1.) Note also that Ph(p) is, by definition, not the Ford domain of p(m,(T)).
However, it is easy to observe that the combinatorial structure of the Ford
domain of p(mi(T")) coincides with the one of Ph(p) if it satisfies Condition
(J) introduced below. (The glueing pattern is a bit different.)

3.1 Condition (J)

Forpe QF andv = (vy,v.) € Wxﬁ—fﬁA, we make the following operation.
Step 1: Since v € A, there is the geodesic segment ! in H? which connects
v, and v_. (It might be a single point in H?2.)

Step 2: Put ¥ = {¢| o is a simplex in D with intc N[ # 0}.
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Figure 3

Step 3: For each triangle ¢ in X, take an elliptic generator triple (P, Q, R)

such that s(P), s(Q), s(R) spans ¢. Then draw segments in C which succes-
sively connect the points :

oo clp, RETY), elp, P, c(p, Q), clp, R), c(p, PX), -+ - .

We shall say that p satisfies Condition (J) if the pattern drawn in Step
3 is nonsingular and dPh(p) is dual to the pattern. (See Figures 3 and 4.)
When p satisfies Condition (J), dPh(p) N C consists of some part of I(p(FP))
for elliptic generators P such that s(P) is a vertex of an end triangle. Then
we define the angle parameter p to be the half the visible angle of I(p(P)).
(See Figure 5.) By the symmetry with respect to p(K), the angle parameter
0p is well defined by the slope s(P). It is also possible to observe that
0p + 0o + 0r = m/2 for an end triangle spanned by s(P),s(Q), s(R). If for
each end triangle o+ (if exist), the barycentric coordinate of vx is equal to
the angle parameter, we shall say that p satisfies Condition (J) with respect
to v.

Supporse that p € QF satisfies Condition (J). Since OPh(p) consists of
the isometric hemispheres of elliptic generators and Ih(p(P)) = Ih(p(KP))
for each elliptic generator P, we can see that the ford domain of p(m,(T))
coincides with Ph(p).
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Figure 4

4 Proof of Theorem 1.1

4.1 Proof of Theorem 1.1(1)

The proof uses the argument of geometric continuity. Let J be the subset of
QF consisting of the representations which satisfies Condition (J). Since QF
is connected, to show that J = QF, we only need to prove that (i) J # 0,
(ii) J is open in QF and (iii) J is closed in QF.

4.1.1 Proof of (i)
Since pp € I, J # 0.

4.1.2 Proof of (ii)

For simplicity, we only consider the generic situation. Supporse that p € J.

Then dPh(p) consists of finite number of isometric hemispheres Ih(p(P;)),

..., Th{p(P,)) (modulo the action of p(K)). Since we are considering the
generic situation, the combinatorial type which is formed by Ih(p(P)), ..., Th(p(F;))
is unchanged after a slight deformation of p. Let p' € QF be such representa-

tion. Since the combinatorial type which is formed by Ih(0'(P)), ..., [h(p'(F:))
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Figure 5

is equal to that of 9Ph(p), we can see that the set
P = 0{Ezt(Ih(p'(P{"))),. .., Bxt(Ih(p'(PS"))) |n € Z}

satisfies the condition that is required by Poincare’s theorem. Thus P is the
Ford domain of Im ¢/, and p’ € J. Note that the combinatorial types of dPh
changes at the non-generic representations. (i.e. Either v, or v_ lies on an
edge of D.) In that case, we need more careful observation.

4.1.3 Proof of (iii) .

Let {pn} C J be a sequence which converges to po, € QF. Then it is known
that {pn} converges strongly to peo. Thus p € J by Proposition 4.1 below.

4.2 Proof of Theorem 1.1(2)

Let poo € OQF. It is known that there is a sequence {p,} C QF which con-
verges strongly to p. Thus we only need to prove the following proposition.

Proposition 4.1. Let {p.} C J be a sequence which converges strongly to
Poo € QF. Then the following holds.

(1) poo satisfies Condition (J).

(2) ve(p) € OH? if and only if v™ (p) € OH? and the equation ve(p) = vM(p)
holds.

The proof is divided into several steps.
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Figure 6

infinite pivot Vﬁ

Figure 7

4.2.1 Upper bound for the visible isometric hemispheres

Since {pn} converges strongly to pe, by taking a subsequence, we can find
an ascending sequence of chains of triangles in D

21 CXCYX3g Cove— X

such that (i) each Z,, is a subchain of ¥(p,,), (ii) if £ has an end triangle o,
o is an end triangle of each X, and X(p,) (n € N), and (iii) dPh(p) consists
of the faces supported by the isometric hemispheres of elliptic generators with
slope in ¥o,. (Several faces might be degenerate to points.)

4.2.2 Limit of end invariants -

The two ends of X is one of the followihg three types.

(i) The end contains at most finite number of triangles, thus contains an
end triangle o.. (See Figure 6.)

(ii) The end contains infinite number of triangles and finite number of
pivots, thus contains an infinite pivot. (See Figure 7.)

(iii) The end contains infinite number of pivots.
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Figure 8

In each case, the end invariant {v¢(p,)} converges to a point ve ¢ € H2. We
shall observe that pe satisfies Condition (J) and v(peo) = Voo = (Veo,+» Voo,~)-
(See Figure 8.)

4.2.3 Proof of Proposition 4.1(1)

The core of the proof is the observation that the local degeneration of the
cells of OPh(p,) is determined by v(p,) — Veo. (The local structures are
assembled into the global structure.) By 4.2.1, we may assume that (locally)
the combinatorial structure is unchanged for sufficiently large n. (To be
precise, the face which is dual to an infinite pivot of the type (ii) end changes
eternally, and we should be careful for it.) Thus we only need to see that
the degeneration of the cells of dPh(p,) with stable combinatorial structure
is determined by v(p,) — Veo.

Since the full proof is elementary but too long, we shall make only one
typical observation here. We call a vertex of 0Ph an inner vertez if it is
contained in H® and an edge is an inner edge if both of its endpoints are inner
vertices. By 3.1, every inner edge is dual to a segment which corresponds to
a triangle in (p). (See 3.1-Step 3.)

Observation 4.2. If an inner edge e C OPh shrinks to a point as n — oo,
then e is dual to a segment corresponding to a triangle which contains end
pivot s(P) of Leo. Moreover, we can see that Ve, . = s(P) and peo(KP) is
an accidental parabolic.

Proof. Since e is an inner edge, e corresponds to the triangle as depicted in
Figure 9. Then e has a neighborhood as depicted in 10. By the symmetry
with respect to Q and R, we can see that the both Euclidean and hyperbolic
length of e, e; and ez coincide. Thus they all shrink to the same point.
Then we can see that Azis(peo(Q)) N AZis(peo(R)) # 0 and thus poo(RQ) =

poo(K P) has a fixed point in H3. (Remind that P, @ and R are order 2
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elements.) Since {pn} converges t0 poo, Poo has no accidental elliptic, thus
Poo (] P) is an accidental parabolic. |

Since Th(poo (K P)) = Ih(poo(P)) and Ih(peo(K P)™) = Ih(peo(PK)), the
limit set A({poo (K?), poo (K P))) is equal to [,U{oo}, where [, is the line which
contains c(peo, P) and is parallel to the real axis. It is known that the limit
set of Im p is contaied in one side of A({poo(K?2), poo(K P))). Thus we can see
that s(P) is an end pivot and v ¢ = s(P). O

4.2.4 Proof of Proposition 4.1(2)

(i) By 4.2.2, v = s(P) € QU {00} if and only if the e-end of L, is type
(i) with veo,c = s(P), or the c-end of X, is type (ii) with infinite pivot
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s(P). The case of type (i) end is easy. In the case of type (ii) end, the
argument in [1] is applicable and we can prove the proposition.

(ii) By 4.2.2, Voo € OH? — QU {00} if and only if the e-end of o, is type
(iii). Let Py, P,,... be elliptic generators such that s(P,), s(P),... are
the mutually distinct pivots of the e-end of L. Then each s(FP;) is also
a pivot of X(p,) for sufficiently large n. In this case the argument in [1]
is applicable and we can see that there exists a universal constant R > 0
such that r(pn, P;) > R, thus r(pe, Pj) 2 R. By a direct calculation,
we can see for each 7 # j that

T(pom PzPJ) = 'f'(l)oo, Pi)'r(pom Pj)/lc(pom Pz) - c(/)oo’ Pj)l
On the other hand, by Jorgensen’s inequality, we have the inequality

Thus, we have |¢(poo, P;) — ¢(poo, P;)| = R?. Hence the closed geodesic
v; which represents p.(F;) exits the e-end as ¢ — oo. Therefore we
have the equality

VM (poo) = lim 5(P,) = Veoye
(See Figure 11.) This completes the proof.
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