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1. Introduction.
We consider the Dirichlet problem for a semilinear degenerate elliptic equation

(DP):

W —g(lzAu+f(zluw)=0 in RN
| | | (@)

@ Bz

where N > 2,
gz =llz|—ar M ||z |—az ||| —ay P* (|| +1)7V,
O<ay<ag<---<ag, 0<X ((=1,2,---,k) and A* >0,
A is the Laplacian, and k(| z |) € C(| = |> ax) will be determined later.

We discuss the problem (DP) under the following assumptions:

(A.1) f(t,y) € C([0,00) x R) is locally Lipschitz continuous in (¢,y).
(A.2) For any t > 0 fixed, f(t,y) is strictly increasing in y.
(A.3) For any t € [0, 00), there exists a continuous function ¢(t) such that f(¢, ¢(t)) = 0.

ExamMPLE
g(zNAv=uluPt ~f(z]).
In this paper, we study (DP) in case N = 2.

Our aim is to prove the following

A) For A\, >0(i=1,2,---,k) and A* > 0, there exists a unique standard and radial
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viscosity solution of (DP). - : :

B) IfM\>1foralli(i=1,2,---,k), there exists a unique viscosity solution of
(DP).

From A), every viscosity solution is radial and standard.

C) If0< X <1 forsomei (i =1,2,---,k), there exist infinitely many viscosity
solutions of (DP). | '

2. Structure of standard viscosity solutions. _ -

Following Crandall and Huan [2], we call a viscosity solution u of (DP) a standard
solution if u(z) = p(a;) (ie.,f(aj,u(z))=0)on|z|=a; (i=1,2,--,k).

In order to construct a standard viscosity solution we shall consider the following
Dirichlet problems : ' ' '

A ~g(|z )Au+f(|2|,u)=0 in B,
(Po)
‘ u(z)=b; on |z|=ay;
{ —g9(lz)Au+f(lz|,u) =0 in A(e,ais1),

P1)

uw(z)="b;, on |zl|=a;, w(z) =bip1 on |z |=aiyg;

—g9(|z )Av+ f(|z|,u) =0 in A(ag,o0),
(Px)

u@) _

=b z|= | _wr)
u(:c) k. on |z |=ay, R R0z D

where A(a;,0,41) = {z € RN : q; <]z |< @i}, i =1,2,---,k—1and b; =
w(a;) (E=1,2,---,k).

Let uy € C(Bay)(\C*(Bay) (resp. u: € C(A(as,airn)) () C2(Alas, ai41))) be a
radial classical solution of (Pg) (resp. (P3) (1 =1,2,---,k)).

Put : '

((uo(z) for z € B,,,

ui(z) for z € A(as,as)
(€) I a(z) = ¢

| up(z) for z € A(ag,0).

It is easy to verify, by the definition of viscosity solutions, that # is a radial and standard
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yiscosiﬁy solution of (DP). An easy caluculation shows that u(z) = y(t) (| z |=1) is a
radial classical solution of (Py) if and only if y(2) is a classical solution of the following
boundary value problem (denoted by (BVP;)): '

(4) (t)('&'t'g'*';a; =f(t,y) in a; <t<a

y(a"l) = bi and y(ai+1) = bi+1 (Z =,03 1, e :k)a

- y(t
where y(aO) — bO and y(ak+1) = bk+1 are replaced by %(0) =0 and ].ll'f)].° hEt; 17

respectively.

From now on we brieﬂy explain that the existence and uniqueness of classical solu-
tions of (BVP;) (i =1,2,---,k) play an essential role to prove our assertion stated in
Introduction. Assume \; > 1 for all i=1,2,---,k. Let u(z) be an arbitrary viscosity
solution of (DP). Define

U(e) = sup u(s) and U) = inf uly)

We observe that U(z) (resp. U(z)) is continuous and radial viscosity subsolution (resp.
supersolution) and U(m) U(z) =b; on | z |=a; (by \; > 1). By the well- known
comparison theorem we have

yi(lz]) U(z) <TU(z) <wi(l z |)
fora; <|z|<aiy1 (2=0,1,2,---,k), where y; is the unique solution of (BVP;).

3. Existence and uniqueness for (BVP;).
In order to study (BVP;), we introduce the following integral equations:

5) y(t) =+ /0 (og/s)s9(s) ™ (5,u()ds

to

©) V(0) =+ toBog(t/t0) + | TogC/s)oa(s) (o)

where 0 < to ¢ {a1,a2,---,ar},a and 3 are real parameters. Applying a fixed point
theorem, we can prove the local existence of solutions of (5) and (6).
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First, to solve (BVPy), we define
| St ={a€eR; tl_i_)zi Yo (t) = +o00}
So={o € R; Jim 1 (t) = existe}
Sy ={a € R; lim yat) = oo},

where y, is a classical solution of (5) obtained by prolonging local solutions of (5) and

(6).

We see that (i) in case 0 < A\; < 2,
S¢ =[@0), So=(a,@), S;=(-c0,0]
and {ya(ar) = lim ya(t) @ € So} = R;
~ and (ii) in case \; > 2,
S§ = (@0,00), So={ac}, S5 =(-c0,a0) and yay(ar) = by.

Consequently we have
PROPOSITION 1. There erists a unique classical solution yo of (BVPg).

Next, to solve (BVPs) (i = 1,2,---,k — 1), we fix to € (a;,a;41) and define for
eacha € R

Bf = {B € R; lim y,s(t) = +oo}
tlTaﬁ
B, ={pe€ R;gmyaﬂ(t) = exists}

B = {B eR; t?ﬁ, Yap(t) = -—00},.

where yag(t) is a éolution of (6) on (Twp,to] (a; < Tup < to).
We can prove that (i) in case 0 < ); < 2,

Bz_ 2[3700)7 Bi=(ga-ﬁ)7 B?=(—mag]

and  {yap(a:) = limyas(t); f € Bi} = R;
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and (ii) in case /\,- >2,
B =(B;, ), B;= {,3,} " Bf = (~00,f;) for some ﬂ, B(a) and  Yap(a)(as) = bi.

And then we solve

o 0O +1%) — 1) i o)
7
yio)=a, (i) = fla).
Define

= {a € R; lim ya(t) = +oo}
A; ={a €R; lim yu(t) = exists}
ttaita
A ={a€R;lim yra(t) = —00},

where Yo (t) := Yap(a)(t) is a solution of (7) on [to,Ta) (to < T < aiv1)-
We observe that (i) in case 0 < A\jy1 < 2,

AF =[@o0), Ai=(2a), A7 =(—o0,q]
and {Ya(ait1) = lim ya(t);a € A} =R;
. tTait1 :
and (ii) in case A\j41 > 2,
Al = (a4,00), Ai={a;}, A =(—o0,a;) forsome o, and Ya(ai+1)=0bit1.

Therefore we have

- PropPosITION 2. There erists a unique classical solution y;(t) of (BVP;) (i =
1,2, k—1). |

(Note that the uniqueness in Propositions 1 and 2 follows immediately from the
maximum principle.)

Finally we shall prove the existence and uniqueness of solutions of (BVPy). It
should be noted that we have to introduce several boundary conditions at co corre-
sponding to the structure of (1). To state our result, we introduce some notation:

Ci=d+ Ao+ +A— A and y:=(-2)/(p-1),
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where p > 1 is assumed. For (BVPy), we make the following assumptions:

lim _ t4(@(t) + (1/)¢ ()
(A4) o <p(| |) = 00 and 11m )P = 0.

(A 5) There exist positive constants ko and Ky such that
kol —v2)(l w1 P7" + [ 92 IP71) < F(twn) ~ F(t,%2)

<Koy —w2)( v [P + |y IP71)

for every y; >y and t >> 1.
(A.6) f(] z|,y) has the following form:

flelby)=yly P ez ]e(z]) P,

REMARK (i) It is easy to verify that (A. 6) = (A.5) = {(A 1),(A.2)}.

(@) + (/1) () e(t) _
(ii) If im0 2P = 6 > 0 and lim;, =
up in a finite interval.

0o, then ¢(t) blows

ProPoSITION 3. Let? < 2. Assume (A.4) and (A.5). Then there ezists a unique
solution of (BVPy) with h(t) =~ ¢(t). Moreover, if h(t)#p(t) then (BVPy) does not

. t
possess any solution, where h(t) = ¢(t) means that hm ;%Z% =1.

Sketch of proof of Proposition 3. Let y4(t) be a classical solution of (4) in
lak, T,) satisfying y,(ag) = bi. Then, it is important to note that tlir% Yo(t) = +o0 or

tli[% Ya(t) = —oo. (In other words, equation (4) does not possess any bounded solution. )

Therefore, as before, we define

={a €R; tli’rr}l Ya(t) = +oo}

A- = {a S R; tli%’l ya(t) = _00}7
where T, < co. It is shown that (1)At # 6, (2)A~ # 0, (3)At UA™ =R, and 4)a; <
ag if ) € A™ and oy € A*. Hence, the cut @ = (A7, A1) is determined. Using (A.4),

(L
we have A~ = (—o0,@), At = [@ o0) and T = co. We can show that tlim yg;—((t)) =1
: lim

and the uniqueness of solutoins of (BVPy) with h(t) = ¢(t) holds.

In a similar spirit, we have



28

. _ t
PropPosITION 4. Let £ > 2. Assume (A.4), (A.5) and tl_hrxoxo —S%%l = 0o0. Then the

assertions as in Proposition 3 are valid.

t
Now, it remains to consider the case hm () ) (0 < k¥ < o0) under the

—00 1Y
‘assumptions (A.4) and (A.6). In this case we may assume

g =t O, | a) < K/t

Pt = KPP + o1 (P, | p1(t) |< K1/t

for évery t>> 1 Putting y(¢) = t"w(t), we get a new ODE for w(t) :
(8) —(Ez—(t) ; (t) =% {wl'wlp —v“w} + (lower term),
where

lower term = —{91(t)(wlw|” P—kP) — (1+ 1)1 (1)}

Then we have 3 types such that

v Y=X|X’P'1-K P v Y=X|X."’_x 4 - . v - Y___X'xlp-l_x P
A YA s YA
Y=7r%
Y=T2X : d
. ; :
; L. W.p : >, @1 @ ,: >
VCEC e T A
| :
Type(1) Type(2) Type3)

We have to introduce various boundary functions h(| z |) corresponding to Type
(1) - Type (8). In what follows, we will focus on Type (3), because Type (3) is the most
interesting case. In this case, we first note that every solution w(t) of (8) with infinite
life span converges to the one of {w_;,wo,w1}. From this it follows that if y(t) is a
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solutmn of (4) in (ax,c0) with infinite life span, then y(t) /t" converges to the one of
{w_1,wo, w1} as t — co. Define

+={a€R;tlTi%ya(t)=+oo and T, < oo}
= {a € R; Jim ya(t)/17 = wy)

4o = {o € B Jim yalt)/t7 = wo}

Ay = {a € R; lim ya (/" = w_}

A" ={e€R;jim Ya(t) = —co and T, < co}.

LemMmA 5. A7 = (—o0,4), A = {a.}, 4 = (ax,a*), A1 = {a*} and
At = (a*, 00).

Using this lemma, we have .

ProposiTiON 6. Type (1) => 3 a unigque solution of (BVPy) with h(t) =~ w".

Type (2) = 3 a unique solution of (BVPy) with h(t) ~ wt? and 3 infinitely
many solutions of (BVPy) with h(t) =~ wyt”. ’

Type (3) == 3 a unique solution of (BVPy) with h(t) ~ wyt , 3 znﬁmtely many
solutions of (BVPyx) with h(t) =~ wot” , and 3 a unique solution of (BVPy) with
h(t) ~w_117 .

ReEMARK In the case where lim;_, o, ¥(t)/t” = wy, if the above boundary condition

is replaced by stronger another condition, then we can prove the uniqueness of solutions
of (BVPy). In fact, let @ € Ap = (at,a*) and y, be a solution of (BVPy). Then, for

every o € R, there exists a unique ¢,(¢) = O(t"~!)(as t — o) such that

lim Ye®) — {wot” + ¢, (t)}

t—oo 161

where 01 = \/plwe|P~1, &; # 0.

Let 6; = 0. For for every o € R, there exists a unique ¢, (t) = O(t"’“l)(as t — o0) such
that

0w _
t—00 logt .

Main result : _
(I)Letl<2and A\; >0 (i=1,2,---,k). Assume (A.4) and (A.5). Then there
exists a unique standard radial viscosity solution u of (DP) with boundary function
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h(| z |) = ¢(| z |). Moreover, if k(| z |) # ©(| = |) then (DP) does not possess any
standard radial viscosity solution of (DP). - :
(II)Let!>2and A\; >0 (i=1,2,---,k). Assume (A.4),(A.5) and lim; o (t)/t7 =
+0c0. Then the assertions of (I) are also valid.
(IIT) Let! > 2and A; > 0 (i =1,2,--,k). Assume (A.4),(A.6) andlim; o, p(t)/t" =
(> 0). Then the same results for standard radial viscosity solutions of (DP) as those
in Proposition 6 hold. Of course, boundary functions are replaced by

h(z ) ~wi|z]?  in case Type();
h(lz|)=w;|z|" ((€{0,1}) in case Type(2);
h(lz|)=~w; |z|? (i€{-1,0,1}) in case Type(3).
In particular, in the case where h(| = |) = wo | = |7, the boundary condition at oo is
replaced by

()= fwo = " 40,z ) _
“|z|—o0 | x I‘Sl

where 6; = \/plwolP~1, 81 # 0.

If 6; = 0, then the boundary condition at co is represented with

o,

lim M@ =zl _
lej—co  log |z |

(IV) If \; > 1 for all 4 € {1,2,---,k}, then the uniqueness of viscosity solutions of
(DP) holds. Hence, every viscosity solution of (DP) is radial.
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